MST: Red Rule, Blue Rule

Some of these lecture slides are adapted from material in:

Cycles and Cuts

Cycle.
- A cycle is a set of arcs of the form \{a,b\}, \{b,c\}, \{c,d\}, \ldots, \{z,a\}.

Cut.
- The cut induced by a subset of nodes S is the set of all arcs with exactly one endpoint in S.
Cycle-Cut Intersection

A cycle and a cut intersect in an even number of arcs.

Proof.

Intersection = \{3, 4\}, \{5, 6\}
Spanning Tree

Spanning tree. Let $T = (V, F)$ be a subgraph of $G = (V, E)$. TFAE:

- T is a spanning tree of G.
- T is acyclic and connected.
- T is connected and has $|V| - 1$ arcs.
- T is acyclic and has $|V| - 1$ arcs.
- T is minimally connected: removal of any arc disconnects it.
- T is maximally acyclic: addition of any arc creates a cycle.
- T has a unique simple path between every pair of vertices.

$G = (V, E)$

$T = (V, F)$
Minimum Spanning Tree

Minimum spanning tree. Given connected graph G with real-valued arc weights c_e, an MST is a spanning tree of G whose sum of arc weights is minimized.

Cayley’s Theorem (1889). There are n^{n-2} spanning trees of K_n.

- $n = |V|$, $m = |E|$.
- Can’t solve MST by brute force.
Applications

MST is central combinatorial problem with diverse applications.

- Designing physical networks.
 - telephone, electrical, hydraulic, TV cable, computer, road
- Cluster analysis.
 - delete long edges leaves connected components
 - finding clusters of quasars and Seyfert galaxies
 - analyzing fungal spore spatial patterns
- Approximate solutions to NP-hard problems.
 - metric TSP, Steiner tree
- Indirect applications.
 - describing arrangements of nuclei in skin cells for cancer research
 - learning salient features for real-time face verification
 - modeling locality of particle interactions in turbulent fluid flow
 - reducing data storage in sequencing amino acids in a protein
Optimal Message Passing

Optimal message passing.

- Distribute message to N agents.
- Each agent can communicate with some of the other agents, but their communication is (independently) detected with probability p_{ij}.
- Group leader wants to transmit message (e.g., Divx movie) to all agents so as to minimize the total probability that message is detected.

Objective.

- Find tree T that minimizes: $1 - \prod_{(i,j)\in T} (1 - p_{ij})$

- Or equivalently, that maximizes: $\prod_{(i,j)\in T} (1 - p_{ij})$

- Or equivalently, that maximizes: $\sum_{(i,j)\in T} \log(1 - p_{ij})$

- Or equivalently, MST with weights p_{ij}.
Fundamental Cycle

Fundamental cycle.
- Adding any non-tree arc e to T forms unique cycle C.
- Deleting any arc $f \in C$ from $T \cup \{e\}$ results in new spanning tree.

Cycle optimality conditions: For every non-tree arc e, and for every tree arc f in its fundamental cycle: $c_f \leq c_e$.

Observation: If $c_f > c_e$ then T is not a MST.
Fundamental Cut

Fundamental cut.
- Deleting any tree arc f from T disconnects tree into two components with cut D.
- Adding back any arc $e \in D$ to $T - \{f\}$ results in new spanning tree.

Cut optimality conditions: For every tree arc f, and for every non-tree arc e in its fundamental cut: $c_e \geq c_f$.
Observation: If $c_e < c_f$ then T not a MST.
MST: Cut Optimality Conditions

Theorem. Cut optimality \Rightarrow MST. (proof by contradiction)

- $T =$ spanning tree that satisfies cut optimality conditions.
- $T^* =$ MST that has as many arcs in common with T as possible.
- If $T = T^*$, then we are done. Otherwise, let $f \in T$ s.t. $f \notin T^*$.
- Let D be fundamental cut formed by deleting f from T.

- Adding f to T^* creates a fund cycle C, which shares (at least) two arcs with cut D. One is f, let e be another. Note: $e \notin T$.
- Cut optimality conditions $\Rightarrow c_f \leq c_e$.
- Thus, we can replace e with f in T^* without increasing its cost.
MST: Cycle Optimality Conditions

Theorem. Cut optimality \implies MST. (proof by contradiction)

- T = spanning tree that satisfies cut optimality conditions.
 T^* = MST that has as many arcs in common with T as possible.

- If $T = T^*$, then we are done. Otherwise, let $f \in T$ s.t. $f \notin T^*$. $e \in T^*$ s.t. $e \notin T$

- Let D be fundamental cut formed by deleting f from T.

- Adding f to T^* creates a fundamental cycle C, which shares (at least) two arcs with cut D. One is f, let e be another. Note: $e \notin T$.

- Cut optimality conditions $\implies c_f \leq c_e$.

- Thus, we can replace e with f in T^* without increasing its cost.
Towards a Generic MST Algorithm

If all arc weights are distinct:

- MST is unique.

- Arc with largest weight in cycle C is not in MST.
 - cycle optimality conditions

- Arc with smallest weight in cutset D is in MST.
 - cut optimality conditions
Generic MST Algorithm

Red rule.
- Let C be a cycle with no red arcs. Select an uncolored arc of C of max weight and color it red.

Blue rule.
- Let D be a cut with no blue arcs. Select an uncolored arc in D of min weight and color it blue.

Greedy algorithm.
- Apply the red and blue rules (non-deterministically!) until all arcs are colored. The blue arcs form a MST.
- Note: can stop once $n-1$ arcs colored blue.
Greedy Algorithm: Proof of Correctness

Theorem. The greedy algorithm terminates. Blue edges form a MST.

Proof. (by induction on number of iterations)

Color Invariant: There exists a MST T^* containing all the blue arcs and none of the red ones.

- Base case: no arcs colored \Rightarrow every MST satisfies invariant.
- Induction step: suppose color invariant true before blue rule.
 - Let D be chosen cut, and let f be arc colored blue
 - If $f \in T^*$, T^* still satisfies invariant
 - O/w, consider fundamental cycle C by adding f to T^*
 - Let $e \in C$ be another arc in D
 - e is uncolored and $c_e \geq c_f$ since
 - $e \in T^*$ \Rightarrow not red
 - Blue rule \Rightarrow not blue, $c_e \geq c_f$
 - $T^* \cup \{ f \} - \{ e \}$ satisfies invariant
Theorem. The greedy algorithm terminates. Blue edges form a MST.

Proof. (by induction on number of iterations)

Color Invariant: There exists a MST T^* containing all the blue arcs and none of the red ones.

- **Base case:** no arcs colored \Rightarrow every MST satisfies invariant.
- **Induction step:** suppose color invariant true before blue rule.
 - let D be chosen cut, and let f be arc colored blue
 - if $f \notin T^*$, T^* still satisfies invariant
 - o/w, consider fundamental cycle C by adding f to T^*
 - let $e \in C$ be another arc in D
 - e is uncolored and $c_e \geq c_f$ since $e \notin T^*$ is not red blue rule \Rightarrow not blue, $c_e \geq c_f$
 - $T^* \cup \{ f \} - \{ e \}$ satisfies invariant
Greedy Algorithm: Proof of Correctness

Proof (continued).

- Induction step: suppose color invariant true before red rule.
 - cut-and-paste

- Either the red or blue rule (or both) applies.
 - suppose arc e is left uncolored
 - blue edges form a forest

Case 1

Case 2
Special Case: Prim’s Algorithm

Prim’s algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)

- $S =$ vertices in tree connected by blue arcs.
- Initialize $S =$ any vertex.
- Apply blue rule to cut induced by S.
Implementing Prim’s Algorithm

Prim’s Algorithm

\[Q \leftarrow \text{PQinit()} \]

\[\text{for each } v \in V \]
\[\text{key}(v) \leftarrow \infty \]
\[\text{pred}(v) \leftarrow \text{nil} \]
\[\text{PQinsert}(v, Q) \]

key(s) \leftarrow 0

\[\text{while (!PQisempty}(Q)) \]
\[v = \text{PQdelmin}(Q) \]

\[\text{for each } w \in Q \text{ s.t } \{v,w\} \in E \]
\[\text{if key}(w) > c(v,w) \]
\[\text{PQdekey}(w, c(v,w)) \]
\[\text{pred}(w) \leftarrow v \]

- O(m + n log n)
- Fib. heap
- O(n^2)
- array
Dijkstra’s Shortest Path Algorithm

<table>
<thead>
<tr>
<th>Dijkstra’s Shortest Path Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q \leftarrow \text{PQinit()}$</td>
</tr>
<tr>
<td>for each $v \in V$</td>
</tr>
<tr>
<td>$\text{key}(v) \leftarrow \infty$</td>
</tr>
<tr>
<td>$\text{pred}(v) \leftarrow \text{nil}$</td>
</tr>
<tr>
<td>$\text{PQinsert}(v, Q)$</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>$\text{key}(s) \leftarrow 0$</td>
</tr>
<tr>
<td>while (!\text{PQisempty}(Q))</td>
</tr>
<tr>
<td>$v = \text{PQdelmin}(Q)$</td>
</tr>
<tr>
<td>for each $w \in Q$ s.t. ${v,w} \in E$</td>
</tr>
<tr>
<td>if $\text{key}(w) > c(v,w)$</td>
</tr>
<tr>
<td>$\text{PQdecreasekey}(w, c(v,w))$</td>
</tr>
<tr>
<td>$c(v,w) + \text{key}(v)$</td>
</tr>
<tr>
<td>$\text{pred}(w) \leftarrow v$</td>
</tr>
</tbody>
</table>

- **Prim’s Algorithm**
 - $c(v,w) + \text{key}(v)$

- $O(m + n \log n)$
- $O(n^2)$
- Fib. heap
- array
Special Case: Kruskal’s Algorithm

Kruskal’s algorithm (1956).

- Consider arcs in ascending order of weight.
 - if both endpoints of e in same blue tree, color red by applying red rule to unique cycle
 - else color e blue by applying blue rule to cut consisting of all vertices in blue tree of one endpoint

Case 1: \{5, 8\}

Case 2: \{5, 6\}
Implementing Kruskal’s Algorithm

Kruskal’s Algorithm

Sort edges weights in ascending order
\[c_1 \leq c_2 \leq \ldots \leq c_m. \]

\[S = \emptyset \]

for each \(v \in V \)

\[\text{UFmake-set}(v) \]

for \(i = 1 \) to \(m \)

\((v, w) = e_i \)

if \(\text{UFfind-set}(v) \neq \text{UFfind-set}(w) \)

\[S \leftarrow S \cup \{i\} \]

\[\text{UFunion}(v, w) \]

\[O(n \log n) \quad O(m \alpha(m, n)) \]

sorting \quad union-find
Special Case: Boruvka’s Algorithm

Boruvka’s algorithm (1926).
 - Apply blue rule to cut corresponding to each blue tree.
 - Color all selected arcs blue.
 - $O(\log n)$ phases since each phase halves total # nodes.

$O(m \log n)$
Implementing Boruvka’s Algorithm

Boruvka implementation.
- Contract blue trees, deleting loops and parallel arcs.
- Remember which edges were contracted in each super-node.
Advanced MST Algorithms

Deterministic comparison based algorithms.

- $O(m \log n)$
 Jarník, Prim, Dijkstra, Kruskal, Boruvka

- $O(m \log \log n)$.
 Cheriton-Tarjan (1976), Yao (1975)

- $O(m \beta(m, n))$.
 Fredman-Tarjan (1987)

- $O(m \log \beta(m, n))$.
 Gabow-Galil-Spencer-Tarjan (1986)

- $O(m \alpha(m, n))$.
 Chazelle (2000)

- $O(m)$.
 Holy grail.

Worth noting.

- $O(m)$ randomized.

- $O(m)$ verification.
 Dixon-Rauch-Tarjan (1992)
Linear Expected Time MST

Random sampling algorithm. (Karger, Klein, Tarjan, 1995)

- If lots of nodes, use Boruvka.
 - decreases number of nodes by factor of 2
- If lots of edges, delete useless ones.
 - use random sampling to decrease by factor of 2
- Expected running time is $O(m + n)$.
Filtering Out F-Heavy Edges

Definition. Given graph G and forest F, an edge e is F-heavy if both endpoints lie in the same component and $c_e > c_f$ for all edges f on fundamental cycle.

- Cycle optimality conditions: T^* is MST \iff no T^*-heavy edges.
- If e is F-heavy for any forest F, then safe to discard e.
 - apply red rule to fundamental cycles

- Given graph G and forest F, is F is a MSF?
- In $O(m + n)$ time, either answers (i) YES or (ii) NO and output all F-heavy edges.
Random Sampling

Random sampling.
- Obtain $G(p)$ by independently including each edge with $p = 1/2$.
- Let F be MSF in $G(p)$.
- Compute F-heavy edges in G.
- Delete F-heavy edges from G.
Random Sampling

Random sampling.

- Obtain $G(p)$ by independently including each edge with $p = 1/2$.
- Let F be MSF in $G(p)$.
- Compute F-heavy edges in G.
- Delete F-heavy edges from G.

$G(1/2)$
Random Sampling

Random sampling.
- Obtain $G(p)$ by independently including each edge with $p = 1/2$.
- Let F be MSF in $G(p)$.
- Compute F-heavy edges in G.
- Delete F-heavy edges from G.

$G(1/2)$

MSF F in $G(1/2)$
Random Sampling

Random sampling.
- Obtain \(G(p) \) by independently including each edge with \(p = 1/2 \).
- Let \(F \) be MSF in \(G(p) \).
- Compute \(F \)-heavy edges in \(G \).
- Delete \(F \)-heavy edges from \(G \).
Random Sampling

Random sampling.

- Obtain $G(p)$ by independently including each edge with $p = 1/2$.
- Let F be MSF in $G(p)$.
- Compute F-heavy edges in G.
- Delete F-heavy edges from G.
Random Sampling Lemma

Random sampling lemma. Given graph G, let F be a MSF in $G(p)$. Then the expected number of F-light edges is $\leq n / p$.

Proof.

- WMA $c_1 \leq c_2 \leq \ldots \leq c_m$, and that $G(p)$ is constructed by flipping coin m times and including edge e_i if i^{th} coin flip is heads.
- Construct MSF F at same time using Kruskal’s algorithm.
 - edge e_i added to F \iff e_i is F-light
 - F-lightness of edge e_i depends only on first $i-1$ coin flips and does not change after phase i
- Phase $k = \text{period between when } |F| = k-1 \text{ and } |F| = k$.
 - F-light edge has probability p of being added to F
 - $\# F$-light edges in phase $k \sim \text{Geometric}(p)$
- Total $\# F$-light edges $\sim \text{NegativeBinomial}(n, p)$.
Random Sampling Algorithm

Random Sampling Algorithm(G, m, n)

Run 3 phases of Boruvka’s algorithm on G. Let G₁ be resulting graph, and let C be set of contracted edges.

IF G₁ has no edges **RETURN** F ← C

G₂ ← G₁(1/2)
Compute MSF F₂ of G₂ recursively.

Compute all F₂-heavy edges in G₁, remove these edges from G₁, and let G’ be resulting graph.

Compute MSF F’ of G’ recursively.

Return F ← C ∪ F’
Analysis of Random Sampling Algorithm

Theorem. The algorithm computes an MST in $O(m+n)$ expected time.

Proof.

- **Correctness:** red-rule, blue-rule.
- Let $T(m, n)$ denote expected running time to find MST on graph with n vertices and m arcs.
- G_1 has $\leq m$ arcs and $\leq n/8$ vertices.
 - each Boruvka phase decreases n by factor of 2
- G_2 has $\leq n/8$ vertices and expected # arcs $\leq m/2$
 - each edge deleted with probability $1/2$
- G' has $\leq n/8$ vertices and expected # arcs $\leq n/4$
 - random sampling lemma

\[
T(m, n) \leq \begin{cases}
 c(m + n) & \text{if } m \leq 1 \text{ or } n \leq 1 \\
 T(m/2, n/8) + T(n/4, n/8) + c(m + n) & \text{otherwise}
\end{cases}
\]

$$
\Rightarrow T(m, n) \leq 2c(m + n)
$$