MST: Red Rule, Blue Rule

Some of these lecture slides are adapted from material in:
• Data Structures and Algorithms, R. E. Tarjan.
• Randomized Algorithms, R. Motwani and P. Raghavan.

Cycles and Cuts

Cycle.
- A cycle is a set of arcs of the form \{(a,b), (b,c), (c,d), \ldots, (z,a)\}.

Cut.
- The cut induced by a subset of nodes \(S\) is the set of all arcs with exactly one endpoint in \(S\).

Cycle-Cut Intersection

A cycle and a cut intersect in an even number of arcs.

Proof.

Spanning Tree

Spanning tree. Let \(T = (V,F)\) be a subgraph of \(G = (V,E)\). TFAE:
- \(T\) is a spanning tree of \(G\).
- \(T\) is acyclic and connected.
- \(T\) is connected and has \(|V|-1\) arcs.
- \(T\) is acyclic and has \(|V|-1\) arcs.
- \(T\) is minimally connected: removal of any arc disconnects it.
- \(T\) is maximally acyclic: addition of any arc creates a cycle.
- \(T\) has a unique simple path between every pair of vertices.
Minimum Spanning Tree

Minimum spanning tree. Given connected graph G with real-valued arc weights c_e, an MST is a spanning tree of G whose sum of arc weights is minimized.

Cayley’s Theorem (1889). There are n^{n-2} spanning trees of K_n.
- $n = |V|$, $m = |E|$.
- Can’t solve MST by brute force.

Applications

MST is central combinatorial problem with diverse applications.
- Designing physical networks.
 - telephone, electrical, hydraulic, TV cable, computer, road
- Cluster analysis.
 - delete long edges leaves connected components
 - finding clusters of quasars and Seyfert galaxies
 - analyzing fungal spore spatial patterns
- Approximate solutions to NP-hard problems.
 - metric TSP, Steiner tree
- Indirect applications.
 - describing arrangements of nuclei in skin cells for cancer research
 - learning salient features for real-time face verification
 - modeling locality of particle interactions in turbulent fluid flow
 - reducing data storage in sequencing amino acids in a protein

Optimal Message Passing

Optimal message passing.
- Distribute message to N agents.
- Each agent can communicate with some of the other agents, but their communication is (independently) detected with probability p_{ij}.
- Group leader wants to transmit message (e.g., Divx movie) to all agents so as to minimize the total probability that message is detected.

Objective.
- Find tree T that minimizes: $1 - \prod_{(i,j) \in T} (1 - p_{ij})$
- Or equivalently, that maximizes: $\prod_{(i,j) \in T} (1 - p_{ij})$
- Or equivalently, that maximizes: $\sum_{(i,j) \in T} \log(1 - p_{ij})$
- Or equivalently, MST with weights p_{ij}.

Fundamental Cycle

Fundamental cycle.
- Adding any non-tree arc e to T forms unique cycle C.
- Deleting any arc $f \in C$ from $T \cup \{e\}$ results in new spanning tree.

Cycle optimality conditions: For every non-tree arc e, and for every tree arc f in its fundamental cycle: $c_f \leq c_e$.
Observation: If $c_f > c_e$ then T is not a MST.
Fundamental Cut

Deleting any tree arc f from T disconnects tree into two components with cut D.
- Adding back any arc $e \in D$ to $T - \{f\}$ results in a new spanning tree.

Cut optimality conditions: For every tree arc f, and for every non-tree arc e in its fundamental cut: $c_e \geq c_f$.

Observation: If $c_e < c_f$ then T is not a MST.

MST: Cut Optimality Conditions

Theorem. Cut optimality \Rightarrow MST. (proof by contradiction)
- T = spanning tree that satisfies cut optimality conditions.
- T^* = MST that has as many arcs in common with T as possible.
- If $T = T^*$, then we are done. Otherwise, let $f \in T$ s.t. $f \notin T^*$.
- Let D be fundamental cut formed by deleting f from T.
- Adding f to T^* creates a fund cycle C, which shares (at least) two arcs with cut D. One is f, let e be another. Note: $e \notin T$.
- Cut optimality conditions $\Rightarrow c_e \leq c_f$.
- Thus, we can replace e with f in T^* without increasing its cost.

MST: Cycle Optimality Conditions

Theorem. Cut optimality \Rightarrow MST. (proof by contradiction)
- T = spanning tree that satisfies cut optimality conditions.
- T^* = MST that has as many arcs in common with T as possible.
- If $T = T^*$, then we are done. Otherwise, let $f \in T$ s.t. $f \notin T^*$.
- Let D be fundamental cut formed by deleting f from T.
- Adding f to T^* creates a fund cycle C, which shares (at least) two arcs with cut D. One is f, let e be another. Note: $e \notin T$.
- Cut optimality conditions $\Rightarrow c_e \leq c_f$.
- Thus, we can replace e with f in T^* without increasing its cost.

Towards a Generic MST Algorithm

If all arc weights are distinct:
- MST is unique.
- Arc with largest weight in cycle C is not in MST.
- Arc with smallest weight in cutset D is in MST.

Generic MST Algorithm

Red rule.
- Let \(C \) be a cycle with no red arcs. Select an uncolored arc of \(C \) of max weight and color it \textcolor{red}{red}.

Blue rule.
- Let \(D \) be a cut with no blue arcs. Select an uncolored arc in \(D \) of min weight and color it \textcolor{blue}{blue}.

Greedy algorithm.
- Apply the red and blue rules (non-deterministically!) until all arcs are colored. The blue arcs form a MST.
- Note: can stop once \(n-1 \) arcs colored blue.

Greedy Algorithm: Proof of Correctness

\textbf{Theorem.} The greedy algorithm terminates. Blue edges form a MST.

\textbf{Proof.} (by induction on number of iterations)

\textbf{Color Invariant:} There exists a MST \(T^* \) containing all the blue arcs and none of the red ones.

- \textbf{Base case:} no arcs colored \(\Rightarrow \) every MST satisfies invariant.
- \textbf{Induction step:} suppose color invariant true before blue rule.
 - let \(D \) be chosen cut, and let \(f \) be arc colored blue
 - if \(f \in T^* \), \(T^* \) still satisfies invariant
 - o/w, consider fundamental cycle \(C \) by adding \(f \) to \(T^* \)
 - let \(e \in C \) be another arc in \(D \)
 - \(e \) is uncolored and \(c_e \geq c_f \) since
 - \(e \in T^* \Rightarrow \) not red
 - blue rule \(\Rightarrow \) not blue, \(c_e \geq c_f \)
 - \(T^* \cup \{ f \} - \{ e \} \) satisfies invariant

Proof (continued).
- \textbf{Induction step:} suppose color invariant true before red rule.
 - cut-and-paste

- Either the red or blue rule (or both) applies.
 - suppose arc \(e \) is left uncolored
 - blue edges form a forest
Special Case: Prim’s Algorithm

Prim’s algorithm. (Jarník 1930, Dijkstra 1957, Prim 1959)
- **S** = vertices in tree connected by blue arcs.
- Initialize **S** = any vertex.
- Apply blue rule to cut induced by **S**.

Dijkstra’s Shortest Path Algorithm

Dijkstra’s **Algorithm**

\[
Q \leftarrow PQinit()
\]

for each \(v \in V \)
- \(key(v) \leftarrow \infty \)
- \(pred(v) \leftarrow \text{nil} \)
- \(PQinsert(v, Q) \)

\[key(s) \leftarrow 0 \]

while (!PQisempty(Q))
- \(v = PQdelmin(Q) \)
 - for each \(w \in Q \) s.t \(\{v, w\} \in E \)
 - if \(key(w) > c(v, w) \)
 - \(PQdekey(w, c(v, w)) \)
 - \(pred(w) \leftarrow v \)

O(m + n log n) Fib. heap
O(n^2) array

Special Case: Kruskal’s Algorithm

Kruskal’s algorithm (1956).
- Consider arcs in ascending order of weight.
 - if both endpoints of \(e \) in same blue tree, color **red** by applying red rule to unique cycle
 - else color \(e \) **blue** by applying blue rule to cut consisting of all vertices in blue tree of one endpoint

Implementing Prim’s Algorithm

Prim’s Algorithm

\[
Q \leftarrow PQinit()
\]

for each \(v \in V \)
- \(key(v) \leftarrow \infty \)
- \(pred(v) \leftarrow \text{nil} \)
- \(PQinsert(v, Q) \)

\[key(s) \leftarrow 0 \]

while (!PQisempty(Q))
- \(v = PQdelmin(Q) \)
 - for each \(w \in Q \) s.t \(\{v, w\} \in E \)
 - if \(key(w) > c(v, w) \)
 - \(PQdekey(w, c(v, w)) \)
 - \(pred(w) \leftarrow v \)

O(m + n log n) Fib. heap
O(n^2) array
Implementing Kruskal’s Algorithm

Kruskal’s Algorithm
Sort edges weights in ascending order $c_1 \leq c_2 \leq \ldots \leq c_m$.

$S = \emptyset$
for each $v \in V$
 UFmake-set(v)
for $i = 1$ to m
 $(v,w) = e_i$
 if ($UF\text{find-set}(v) \neq UF\text{find-set}(w)$)
 $S \leftarrow S \cup \{i\}$
 UFunion(v, w)

$O(n \log n)$ $O(m \alpha (m, n))$
sorting union-find

Implementing Boruvka’s Algorithm

Boruvka implementation.
- Contract blue trees, deleting loops and parallel arcs.
- Remember which edges were contracted in each super-node.

Advanced MST Algorithms

Deterministic comparison based algorithms.
- $O(m \log n)$ Jarník, Prim, Dijkstra, Kruskal, Boruvka
- $O(m \log n)$. Cheriton-Tarjan (1976), Yao (1975)
- $O(m \beta(m, n))$. Fredman-Tarjan (1987)
- $O(m \log \beta(m, n))$. Gabow-Galil-Spencer-Tarjan (1986)
- $O(m \alpha (m, n))$. Chazelle (2000)
- $O(m)$. Holy grail.

Worth noting.
- $O(m)$ verification. Dixon-Rauch-Tarjan (1992)
Linear Expected Time MST

Random sampling algorithm. \((Karger, \text{Klein, Tarjan, 1995})\)
- If lots of nodes, use Boruvka.
 - decreases number of nodes by factor of 2
- If lots of edges, delete useless ones.
 - use random sampling to decrease by factor of 2
- Expected running time is \(O(m + n)\).

Filtering Out F-Heavy Edges

Definition. Given graph \(G\) and forest \(F\), an edge \(e\) is F-heavy if both endpoints lie in the same component and \(c_e > c_f\) for all edges \(f\) on fundamental cycle.
- Cycle optimality conditions: \(T^*\) is MST \(\iff\) no \(T^*\)-heavy edges.
- If \(e\) is F-heavy for any forest \(F\), then safe to discard \(e\).
 - apply red rule to fundamental cycles

Verification subroutine. \((\text{Dixon-Rauch-Tarjan, 1992})\).
- Given graph \(G\) and forest \(F\), is \(F\) is a MSF?
- In \(O(m + n)\) time, either answers (i) YES or (ii) NO and output all F-heavy edges.

Random Sampling

Random sampling.
- Obtain \(G(p)\) by independently including each edge with \(p = 1/2\).
- Let \(F\) be MSF in \(G(p)\).
- Compute F-heavy edges in \(G\).
- Delete F-heavy edges from \(G\).
Random Sampling

Random sampling.
- Obtain $G(p)$ by independently including each edge with $p = 1/2$.
- Let F be MSF in $G(p)$.
- Compute F-heavy edges in G.
- Delete F-heavy edges from G.

$G(1/2)$

MSF F in $G(1/2)$

Random Sampling Lemma

Random sampling lemma. Given graph G, let F be a MSF in $G(p)$. Then the expected number of F-light edges is $\leq n/p$.

Proof.
- WMA $c_1 \leq c_2 \leq \ldots \leq c_m$, and that $G(p)$ is constructed by flipping coin m times and including edge e_i if i^{th} coin flip is heads.
- Construct MSF F at same time using Kruskal's algorithm.
 - edge e_i added to $F \iff e_i$ is F-light
 - F-lightness of edge e_i depends only on first $i-1$ coin flips and does not change after phase i
- Phase $k = \text{period between when } |F| = k-1 \text{ and } |F| = k$.
 - F-light edge has probability p of being added to F
 - # F-light edges in phase $k \sim \text{Geometric}(p)$
- Total # F-light edges $\sim \text{NegativeBinomial}(n, p)$.
Random Sampling Algorithm

Random Sampling Algorithm(G, m, n)

Run 3 phases of Boruvka’s algorithm on G. Let G₁ be resulting graph, and let C be set of contracted edges.

IF G₁ has no edges RETURN F ← C

G₂ ← G₁(1/2)
Compute MSF F₂ of G₂ recursively.

Compute all F₂-heavy edges in G₁, remove these edges from G₁, and let G’ be resulting graph.

Compute MSF F’ of G’ recursively.

Return F ← C ∪ F’

Analysis of Random Sampling Algorithm

Theorem. The algorithm computes an MST in \(O(m+n)\) expected time.

Proof.

- **Correctness:** red-rule, blue-rule.
- Let \(T(m, n)\) denote expected running time to find MST on graph with \(n\) vertices and \(m\) arcs.
 - \(G₁\) has \(\leq m\) arcs and \(\leq n/8\) vertices.
 - each Boruvka phase decreases \(n\) by factor of 2
 - \(G₂\) has \(\leq n/8\) vertices and expected # arcs \(\leq m/2\)
 - each edge deleted with probability 1/2
 - \(G’\) has \(\leq n/8\) vertices and expected # arcs \(\leq n/4\)
 - random sampling lemma

\[
T(m, n) \leq \begin{cases}
 c(m+n) & \text{if } m \leq 1 \text{ or } n \leq 1 \\
 T(m/2, n/8) + T(n/4, n/8) + c(m+n) & \text{otherwise}\\
\end{cases}
\]

\[
\Rightarrow T(m, n) \leq 2c(m+n)
\]