Prototypical divide-and-conquer algorithm
Why study mergesort?

Guaranteed to run in $O(N \log N)$ steps
Method of choice for linked lists

Drawback:
- Linear extra space
- (can only sort half the memory)

An "optimal" sorting method

Leads us to consider
- recurrence relationships
- computational complexity
- deep hacking
- fractals
#define T Item

merge(T c[], T a[], int N, T b[], int M)
{ int i, j, k;
 for (i = 0, j = 0, k = 0; k < N+M; k++)
 {
 if (i == N) { c[k] = b[j++]; continue; }
 if (j == M) { c[k] = a[i++]; continue; }
 if (less(a[i], b[j]))
 c[k] = a[i++]; else c[k] = b[j++];
 }
}
Merging example

Trivial computation?

Try doing it without using linear extra space
Abstract inplace merge

Easier for calling routine to assume merge is inplace
 - assume files to be merged are both in arg array
 - copy files into temp array
 - merge back into arg array

Trick: reverse second file when copying
 - avoids special tests for ends of arrays
Abstract inplace merge implementation

```c
Item aux[maxN];
merge(Item a[], int l, int m, int r)
{
    int i, j, k;
    for (i = m+1; i > l; i--) aux[i-1] = a[i-1];
    for (j = m; j < r; j++) aux[r+m-j] = a[j+1];
    for (k = l; k <= r; k++)
        if (less(aux[i], aux[j]))
            a[k] = aux[i++]; else a[k] = aux[j--];
}
```
Mergesort example

A S O R T I N G E X A M P L E
A S
O R
A O R S
I T
G N
G I N T
A G I N O R S T
E X
A M
A E M X
L P
E L P
A E E L M P X
A A E E G I L M N O P R S T X
Mergesort implementation

```c
void mergesort(Item a[], int l, int r)
{
    int m = (r+l)/2;
    if (r <= l) return;
    mergesort(a, l, m);
    mergesort(a, m+1, r);
    merge(a, l, m, r);
}
```

Tree structures describe merge file sizes
Recurrences

Direct relationship to recursive programs

- (most programs are "recursive")

Easy telescoping recurrences

- $T(N) = T(N-1) + 1 \quad T(N) = N$
- $T(2^n) = T(2^{(n-1)}) + 1 \quad T(N) = \lg N \text{ if } N=2^n$

Short list of important recurrences

- $T(N) = T(N/2) + 1 \quad T(N) = \lg N$
- $T(N) = T(N/2) + N \quad T(N) = N$
- $T(N) = 2T(N/2) + 1 \quad T(N) = N$
- $T(N) = 2T(N/2) + N \quad T(N) = N \lg N$

Details in Chapter 2
THM: Mergesort uses \(N \lg N \) comparisons

Proof:
- From code,
 \[
 T(N) = 2T(N/2) + N
 \]
- For \(N = 2^n \) (\(n = \lg N \)),
 \[
 T(2^n) = 2T(2^{(n-1)}) + 2^n
 \]
- Divide both sides by \(2^n \)
 \[
 T(2^n)/2^n = T(2^{(n-1)})/2^{(n-1)} + 1
 \]
- Telescope:
 \[
 T(2^n)/2^n = n
 \]
- Therefore,
 \[
 T(N) = N \lg N
 \]

Exact for powers of two, approximate otherwise

Guaranteed worst-case bound
THM: Number of compares used by Mergesort for
- is the same as
number of bits in the binary representations
of all the numbers less than N (plus N-1).

Proof: They satisfy the same recurrence
- \(C(2N) = C(N) + C(N) + 2N \)
- \(C(2N+1) = C(N) + C(N+1) + 2N+1 \)
Mergesort and fractals

Divide-and-conquer algs exhibit erratic periodic behavior

number of bits in numbers less than N
 $\quad = \text{number of 0 bits} + \text{number of 1 bits}$
 $\quad = (N \log N)/2 + \text{periodic term}$
 $\quad + (N \log N)/2 + \text{periodic term}$
 $\quad = N \log N + \text{periodic term}$
Divide-and-conquer

Basic algorithm design paradigm

"Master Theorem" for analyzing algorithms
- $T(N) = aT(N/b) + N^c(lg N)^d$

Interested in learning more?
- Stay tuned for a few more in CS 226
- Take CS 341, CS 423
- Read "Introduction to the Analysis of Algs" by Sedgewick and Flajolet
Computational Complexity

Framework to study efficiency of algorithms

Machine model: count fundamental operations

Average case:
 • predict performance (need input model)
Worst case:
 • guarantee performance (any input)

Upper bound: algorithm to solve the problem
Lower bound: proof that no algorithm can do

Complexity studies provide
 • starting point for practical implementations
 • indication of approaches to be avoided
Complexity of sorting

$N \lg N$ comparisons necessary and sufficient

Upper bound: $N \lg N$ (Mergesort)
Lower bound: $N \lg N - N/(\ln 2) + \lg N$

THM: All comparison-based sorting methods must use at least $N \lg N$ comparisons

Proof:

COMPARISON TREE (all sequences of comparisons)
Comparison tree for sorting

Path from root to leaf describes operation of sorting algorithm on given input

Claim 1: at least $N!$ leaves
Claim 2: height at least $\lg N$
Claim 3: (Stirling's formula for $\lg N$!)
 - height at least $N \lg N - N/(\ln 2) + \lg N$

Caveat: what if we don't use comparisons??
Stay tuned for radix sort
Mergesort without move

Alternative to abstract inplace merge

```c
void mergesort(T a[], T b[], int l, int r)
{ int m = (l+r)/2;
  if (r-l <= 10)
  { insertion(a, l, r); return; }
  mergesort(b, a, l, m);
  mergesort(b, a, m+1, r);
  merge(a+l, b+l, m-l+1, b+m+1, r-m);
}

void sort(Item a[], int l, int r)
{ int i;
  for (i = l; i <= r; i++) aux[i] = a[i];
  mergesort(a, aux, l, r);
}
```
CODE OPTIMIZATION: Improve performance by tuning code
 • concentrate on inner loop

For mergesort,
 • Avoid move with recursive argument switch
 • Avoid sentinels with "up-down" trick

Combine the two? Doable, but mindbending

Can make mergesort almost as fast as quicksort
 • mergesort inner loop: compare, store, two incs
 • quicksort inner loop: compare, inc
Bottom-up mergesort

Pass through the file
- merge adjacent subfiles
- size doubles each time through
Bottom-up mergesort implementation

void mergesort(Item a[], int l, int r)
{
 int i, m;
 for (m = 1; m < r-l; m = m+m)
 for (i = l; i <= r-m; i += m+m)
 merge(a, i, i+m-1, min(i+m+m-1, r));
}

Different set of merges than for top-down
• unless N is a power of two

4.20
Merging linked lists

Problem: sort data on a linked list
(rearrange list so items are in order)

typedef struct node *link;
struct node { Item item; link next; };

First step: merge implementation

link merge(link a, link b)
{ struct node head; link c = &head;
 while ((a != NULL) && (b != NULL))
 if (less(a->item, b->item))
 { c->next = a; c = a; a = a->next; }
 else
 { c->next = b; c = b; b = b->next; }
 c->next = (a == NULL) ? b : a;
 return head.next;
}
Split, sort, and merge

link mergesort(link c)
{
 link a, b;
 if (c->next == NULL) return c;
 a = c; b = c->next;
 while ((b != NULL) && (b->next != NULL))
 {
 c = c->next; b = b->next->next;
 }
 b = c->next; c->next = NULL;
 return merge(mergesort(a), mergesort(b));
}
Bottom-up list mergesort

Cycle through a circular list

```c
link mergesort(link t)
{
    link u;
    for (initQ(); t != NULL; t = u)
    {
        u = t->next; t->next = NULL; putQ(t); }
    t = getQ();
    while (!emptyQ())
    {
        putQ(t); t = merge(getQ(), getQ()); }
    return t;
}
```