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ABSTRACT

Motivation: Side-chain positioning is a central component of homo-
logy modeling and protein design. In a common formulation of the
problem, the backbone is fixed, side-chain conformations come from
a rotamer library, and a pairwise energy function is optimized. It
is NP-complete to find even a reasonable approximate solution to
this problem. We seek to put this hardness result into practical
context.

Results: We present an integer linear programming (ILP) formulation
of side-chain positioning that allows us to tackle large problem sizes.
We relax the integrality constraint to give a polynomial-time linear
programming (LP) heuristic. We apply LP to position side chains on
native and homologous backbones and to choose side chains for pro-
tein design. Surprisingly, when positioning side chains on native and
homologous backbones, optimal solutions using a simple, biologic-
ally relevant energy function can usually be found using LP. On the
other hand, the design problem often cannot be solved using LP dir-
ectly; however, optimal solutions for large instances can still be found
using the computationally more expensive ILP procedure. While dif-
ferent energy functions also affect the difficulty of the problem, the
LP/ILP approach is able to find optimal solutions. Our analysis is the
first large-scale demonstration that LP-based approaches are highly
effective in finding optimal (and successive near-optimal) solutions for
the side-chain positioning problem.

Availability: The source code for generating the ILP given a
file of pairwise energies between rotamers is available online at
http://compbio.cs.princeton.edu/scplp

Contact: msingh@cs.princeton.edu

INTRODUCTION

Side-chain positioning (SCP) isakey step in computational methods
for predicting and [designing protein structures (e.g. see Summers
and Karplus, 1989; Holm and Sander, 1991; L ee and Subbiah, 1991,
Ventura and Serrano, 2004; Park et al., 2004). A widely studied
formulation of the problem assumes a fixed backbone, a pairwise
energy function, and a set of possible rotamer choices (Ponder and
Richards, 1987; Dunbrack and Karplus, 1993) for each C, position
on the backbone. The goal isto choose arotamer for each position so
that the total energy of the molecule is minimized. Thisformulation
of SCP has been the basi s of some of the more successful methodsfor

*To whom correspondence should be addressed.

homology modeling (e.g. Petrey et al., 2003; Xiang and Honig, 2001;
Jones and Kleywegt, 1999; Bower et al., 1997) and protein design
(e.g. Dahiyat and Mayo, 1997; Malakauskas and Mayo, 1998; L oo-
ger et al., 2003). In homology modeling, the goal is to predict the
structure for aprotein that is homol ogous to another of known struc-
ture; inthat case therotamers considered at each position correspond
toasingleamino acid. Inproteindesign, thegoal istofind asequence
of amino acids that will fold into a particular backbone, and so the
rotamers at each position come from several possible amino acids.
Although the goal of SCP is very different in these two cases, the
underlying formulation for both problemsisidentical.

SCP methods are commonly evaluated using two scales. In the
predictive scale, one asks how well the side-chain conformations
predicted by the method agree with those that are found in the
actual structure; or, in the case of protein design, whether the newly
designed sequence foldsinto the desired shape. In the combinatorial
scale, oneaskshow closethetotal energy resulting from the predicted
side-chain conformations is to the lowest possible minimum energy
using the given rotamer library and energy function. Of course, the
predictive scale measures what we are ultimately interested in (i.e.
the quality of the end result). However, the combinatorial scale is
useful for improving search algorithms and energy functions, and
such improvements are necessary to get higher-quality predictions
of side-chain conformations. Theoretical results argue that the SCP
problem is difficult on the combinatorial scale: the mathematical
problem underlying SCP is not just NP-complete (Pierce and Win-
free, 2002), but also inapproximable (Chazelle et al., 2004). That
is, itisunlikely that there exists a polynomial-time method that can
guarantee agood (let alone optimal) solutionto SCP for all instances
of the problem. However, these are worst-case results: they may not
hold for the classes of problems and energy functions that occur in
practice. In this paper, we hope to put these theoretical hardness
resultsinto practical context.

We present an integer linear programming (ILP) formulation of
SCP. Though derived independently, our formulation is similar to
previous ILP formulations for SCP (Althaus et al., 2000; Eriksson
et al., 2001) and related problems (Klepeis et al., 2003). Our new
formulation can tackle larger problem sizes and can obtain suc-
cessive near-optimal solutions. Multiple near-optimal solutions are
especialy useful in protein design, where it may be desirable to
find several possible sequences for a particular shape. By relaxing
the integrality constraint, we get a polynomial-time linear program-
ming (LP) heuristic. Our LP/ILP approach for SCP is as follows.
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First, we apply LP to an instance of SCP. If the solution using LP
isintegral, then that solution is provably the conformation with the
global minimum energy, and we have found, in polynomial-time,
the optimal solution to the SCP instance. On the other hand, if the
solution using LP is fractional, we run the computationally more
expensive (i.e. no longer polynomial-time) ILP procedureto find the
optimal SCP solution.

Using our LP/ILP approach, we evaluate SCP instances arising on
native and homologous backbones, and when choosing side chains
for protein design. We show that, LP and ILP are highly effective
methods for obtaining optimal solutions for the SCP problem. The
LP/ILP approach is shown to tackle problems of sizeup to 1078 eas-
ily when packing side chains on native and homologous backbones,
and of size up to 10?°! when redesigning protein cores. As proof of
principle, we also obtain multiple (100) near-optimal solutionsfor a
native-backbone SCP problem of size 107,

We can use our LP formulation to probe the difficulty of SCP
instances arising in different applications. We label an instance as
‘easy’ if LP finds an integral (i.e. optimal) solution. In contrast,
if LP finds a fractional solution, we use it as evidence that the
instance is more difficult to solve. Our computational experiments
on 25 native-backbone problems and 33 homology-modeling prob-
lems show that LP can almost always find an integral solution when
using an energy function based on van der Waals interactions and a
statistical rotamer self-energy term. Similar, even simpler, energy
functions have been the basis for successful homology-modeling
packages (Bower et al., 1997). Since SCP is NP-complete, it is
intriguing that integral solutions are found so readily, and in these
cases, because a polynomial-time procedure has provably found
optimal solutions, it appears that the theoretical hardness results
do not apply in practice. On the other hand, when using the same
energy function on 25 protein design problems of approximately
the same size, the LP does not often find integral solutions. This
suggests that the optimization problems underlying protein design
may be considerably more difficult to solve than those arising in
the native- or homology-modeling settings. We also explore how
changing the energy functions affects the problem’s hardness. The
LP approach sometimes finds optimal solutions under energy func-
tion variants; however, different energy functions affect its ability
to do so.

Further previous work. Perhaps foreshadowing the idea that the
theoretical hardness results for SCP do not always apply in practice
is the considerable progress in the development of both exhaustive
and heuristic techniques for this problem. Within the past dozen
years, a series of papers on dead-end elimination have given rules
for throwing out rotamers that cannot possibly be in the optimal
solution (e.g. Desmet et al., 1992, 1994; Goldstein, 1994; Lasters
et al., 1995; Gordon and Mayo, 1998; Looger and Hellinga, 2001;
Gordon et al., 2002). Special-purpose heuristic search techniques
for specific energy functions have been successfully applied, asin
the origina Scwrl package (Bower et al., 1997), and more gen-
eral search methods such as simulated annedling (e.g. Lee and
Subbiah, 1991; Holm and Sander, 1991), A* (Leach and Lemon,
1998), Monte Carlo search (e.g. Xiang and Honig, 2001) and mean-
field optimization (Lee, 1994) have also been used. Specialized
graph-theoretic approaches have also been developed (Samudrala
and Moult, 1998; Canutescu et al., 2003; Bahadur et al., 2004).
Of these previous methods, the exhaustive methods always find the

optimal solution but are not efficient (i.e. may require exponential
search), whereas the heuristics are efficient but do not guarantee
finding the optimal solution. In contrast, our LP formulation is effi-
cient, and when it finds an optimal solution, thisis evident through
integrality; however, it is not guaranteed to find such a solution
(when it does not, ILP is applied). Although different mathemat-
ical programming approachesto SCP (Althauset al., 2000; Eriksson
et al., 2001; Chazelle et al., 2004) have been suggested previ-
oudly, thisis the first time such an approach has been extensively
tested.

Biological relevance.  Whileour primary goal isto study thecom-
binatorial nature of SCP, in order to verify that the energy functions
considered are appropriatefor predicting protein structuresfor native
and homologous backbones, we compare side-chain conformations
predicted by the LP/ILP approach with those in the native structures.
Thesolutionsfound for nativeand homol ogousbackbonesgivestruc-
turesthat are comparable in quality to those found by other methods
using thesamerotamer library (Bower et al., 1997; Xiang and Honig,
2001).

Practical implications. There are several immediate practical
consequences of our analysis. First, our work argues that attempts
to improve search methods should be focused on protein design
problems, as they seem to be computationally more difficult to
solve than homology modeling problems. Second, in our experi-
ence, even seemingly small differences in problem instances can
have a large impact on the ease with which solutions are obtained.
This makes it hard to compare different published benchmarks of
SCP algorithms, as these algorithms are often tested with differing
energy functions and in different settings (e.g. design versus homo-
logy modeling). To facilitate comparisons and to encourage the use
of LP/ILP approaches, we are making our software for generating
the LP/ILP publicly available. Third, our analysis suggests that the
choice of an energy function should depend on two factors. how
biologically meaningful it is and how it affects the ease with which
optimal or near-optimal solutions are found. For example, acombin-
atorialy ‘easy’ energy function may be useful in finding a subset of
reasonable predictions that can then be evaluated using the desired
energy function. Finally, and most importantly, our analysisincludes
the first large-scale test of an LP/ILP approach, and we demonstrate
that such an approach provides an effective and practical technique
for solving the SCP problem for both homology modeling and pro-
tein design applications. Because there has been decades of research
on LP, we can exploit highly developed machinery; the advantage
of relying on this off-the-shelf technology is that any subsequent
progressin optimizing linear programs will trandate into faster run-
ning times for our method. While there are many fast heuristics for
SCP, in many cases, optimal and successive near-optimal solutions
are desired. In these cases, L P-based approaches provide a general,
state-of-the-art methodol ogy.

METHODS

Problem for mulation

The SCP problem can be stated as follows (Desmet et al., 1992): given a
fixed backbone of length p, each residue position i is associated with a set
of possible candidate rotamers {i;}. Once a single rotamer for each residue
position has been chosen, the potential energy of aprotein system isgiven by
theformula = Eo+3; EG,)+); ; E(ir Js), where Eg isthe self-energy
of the backbone, E (i,) is the energy resulting from the interaction between
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the backbone and the chosen rotamer i, at position i as well astheintrinsic
energy of rotamer i,, and E (i, j;) accountsfor the pairwiseinteraction energy
between chosen rotamersi, and j,. In this discretized setting, the placement
of each side chainisreduced to finding an assignment of rotamersto positions
that minimizesthe overall energy of the system (the global minimum energy
conformation).

It is convenient to reformulate the SCP problem in graph-theoretic terms.
Let G beanundirected p-partite graph with nodeset V1 U- - - UV, where V;
includes anode « for each rotamer i, at position i; the V;’smay have varying
sizes. Eachnodeu of V; isassigned aweight E,,, = E(i,); each pair of nodes
u e V;andv e V; (i # j), corresponding to rotamersi, and j; respectively,
isjoined by an edge with aweight of E,, = E(i, j;). Zero-weight edges can
be thought of as equivalent to the absence of an edge. The global minimum
energy conformation is achieved by picking one node per V; to minimize the
weight of the induced subgraph.

Integer linear programming formulation

We first formulate the SCP problem as an ILP, so that a solution to the
ILP gives an optimal solution to the SCP problem. The ILP is based on
the graph formulation of SCP discussed above. The vertex set of this graph
isV=ViU---UV, anditsedgeset D = {(u,v) : u € V;,v € V},
i # )

We introduce a {0, 1} decision variable x, for each node u in V, and a
{0, 1} decision variable x,, for each edgein D. Setting x,, to 1 corresponds
to choosing rotamer u, and similarly setting xy to 1 correspondsto choosing
to‘pay’ the energy between rotamersu and v. We constrain our optimization
so that only one rotamer is chosen per residue, and so that we pay the cost
for edge {u, v} if and only if rotamersu and v are both chosen. The following
integer program ensures these conditions:

Minimize E=vev EuuXuu + Z(u’v)eu EuvXuo
subject to
ey, Xu =1 forj=1,...,p (IPD)
Zuevjxuu:xw forj=1,....,p andveV\V;
'xlllllxllU e {0, 1}.

Thefirst set of constraintsensuresthat we choose exactly onerotamer for each
residue. The second set of constraints demands that we set the edge variables
xyuy to 1 for edgesthat are in the subgraph induced by the choice of rotamers:
if x,», = 0 then no adjacent edges can be chosen, and if x,, = 1 then exactly
one adjacent edge is chosen for each vertex set. This formulation is similar
to the version of (Althauset al., 2000) (without modifying the energiesto be
negative) and simpler than that of (Eriksson et al., 2001). Additionally, onthe
experimental side, Klepeis et al. (2003) use a similar integer programming
formulation to design variants of the peptide Compstatin that are predicted
to improved inhibitory activity in complement pathways. However, this is
a dlightly different model in which side-chain positions are not explicitly
represented.

In practice, the ILP given above can have many variables and constraints
that do not affect the optimization, and the system can be pruned dramatically.
In particular, if al the pairwise energies between rotamersin positions i and
j are non-positive, then we can remove al variables x,, withu € V; and
v € V; suchthat E,, = 0, and modify the equality constraintsin (IP1) that
contain such an x,, by removing those variables and changing ‘=" to ‘<.
Because we are minimizing and all the energies between i and j are zero or
less, this change does not affect the optimal solution. A frequent special case
has zero energies between all rotamers in two positions; this corresponds
to residues that are too far apart in the structure to have any rotamers that
interact with each other. The more general caseinvolvesresiduesthat are far
enough apart that only a subset of their rotamers have interactions with each
other.

More formally, for each V;, let JV'*(V]-) be the set union of the V; for
which there exists some v € V; and u € V; with E,, > 0. Let D" be the set
of pairs{u,v} withu € V; suchthat either v € N'*(V;), orv ¢ N (V;) but

E,, < 0. Therewill be edge variables x,,, only for pairsin D’. Our modified
ILPisasfollows:

Minimize E =Y ey EuwuXuu + Z(w}w, EvoXuo
subject to

quu:]- fOI’j:l,,_.,p

uevj

1P2

ZXuU:XUv fOTj=1,..‘,p and U€N+(Vj) ( )

uevj

D T < Fw forj=1,...,p and v g NF(V))
ueV;:Eyy<0

Xuus Xuv € {0, 1}

Aninequality constraint is not included if the sum on the left-hand sideis
empty. The simple modification of (1P1) givenin (IP2) iscrucia in practice,
providing in some cases an order of magnitude speed up.

Multiple solutions

Sometimesit is desirable to find several optimal and near-optimal solutions.
In the present framework, the LP/ILP can be solved iteratively to find an
ensemble of low-energy solutions. At iteration m, all previously discovered
solutions are excluded by adding the constraints

Y xw<p-1 fork=1,...m-1 &)

ueSy

to (IP2), where S contains the optimal set of rotamers found in iteration k.
This requires that the new solution differs from all previous onesin at least
one position. As pointed out by an anonymous reviewer, it may be desirable
to obtain successive solutions that differ more from each other, and this can
be accomplished by replacing p — 1in (1) by p — g, wherel < ¢ < p.

LP/ILP approach

The ILP formulation is as hard to solve as the original SCP problem. If
we relax the integrality constraints x,, € {0,1} by replacing them with
constraints 0 < x,, < 1for u,v € V, we obtain a linear program,
which can be solved efficiently. If the optimal solution to the relaxed lin-
ear program is integral—all variables are set to either O or 1—then that
solution is also an optimal solution to the ILP and SCP problem. So our
LP/ILP approach to find optimal solutions is as follows: solve the prob-
lem of interest using the computationally easier LP formulation. If the
solution returned is integral, then the problem instance was easy to solve,
and we have the optimal solution to the original SCP problem. Otherwise,
we run polynomial-time Goldstein dead-end elimination (DEE) (Goldstein,
1994) until no more rotamers can be eliminated and then solve the more
difficult ILP.

The CPLEX package (ILOG CPLEX, 2000, http://www.ilog.com/
products/cplex/) with AMPL (Fourer et al., 2002) was used to solve the
linear and integer programs. All computation was done on a single Sparc
1200 MHz processor.

Dataset

The primary protein set (Table 1) consists of 25 proteins taken from Xiang
and Honig (2001). The proteins vary in size, ranging from 50 to 221
residues with more than one possible rotamer. As in Xiang and Honig
(2001), only the first chain in the Protein Data Bank (PDB) file is used for
experiments.

For homology modeling, 33 homologs to the proteins of Table 1 are
also used. These protein pairs share between 29 and 87% sequence iden-
tity (Table 2). Whereas for some proteins there are other more similar
protein sequences present in the PDB, for evaluation purposes, the chosen
homologs give a wider range of sequence identity. Clustal W (Thompson
et al., 1994), with default settings, was used to align the protein pairs.
For each pair, the protein in the original dataset was taken as the template
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Table 1. The native backbone problem sizes

Table 2. The homology modeling problems and their sizes

Prot Len Var Rot Size Time(s)
laac? 105 85 1523 79 14
laho? 64 54 981 49 7
1b90 123 112 2056 112 25
1c5e 95 71 1108 61 8
1c90 66 53 1130 56 9
lcc7 72 66 1396 66 17
lcex? 197 146 2556 136 36
1cku 85 60 1093 58 10
1ctj? 89 61 1021 62 6
1cz9 139 111 2332 111 56
1czp 98 83 1170 75 10
1d4t 104 89 1636 84 19
ligd® 61 50 926 a7 6
Imfm 153 118 2134 112 23
1plc 99 82 1156 73 8
1qj4 256 221 4080 218 100
1gg4 198 143 2045 121 29
1qtn 152 134 2516 132 33
1qu9 126 100 1817 94 20
1rcf 169 142 2396 139 43
1vfy 67 63 939 56 7
2pth 193 151 3077 151 68
3zt 129 105 2074 102 28
5p21 166 144 2874 146 78
7rsa 124 109 1958 100 26

For each protein, Prot gives its PDB identifier, Len gives its length, Var indicates how
many of its side chains have more than one possible rotamer and Rot gives the total
number of rotamers considered. Size givesthelog,, of the search space size. Time gives
the number of seconds for the solve phase of CPLEX.

aThe proteins were used to determine the weight of the statistical potential in the basic
energy function (see text).

backbone, and its sequence homolog was taken as the target protein to be
predicted. If the i-th residue of the target sequence is aligned to the j-th
residue of the template sequence, then rotamers corresponding to the i-th
residue were considered at the j-th position in the template backbone. Any
gaps in the target sequence were handled by modeling the side chains of
the native residues of the template. Any gaps in the template sequence
caused the corresponding residuesin the target sequence to be | eft out of the
model.

Rotamer library and structure manipulation

We used Dunbrack’s backbone-dependent rotamer library (Dunbrack and
Karplus, 1993). For each 10° range of ¢, ¥ backbone angles, thislibrary has
320 rotamers, with the largest number of rotamers, 81, belonging to arginine
andlysine. Backboneswerehel d fixed, and missing backbone hydrogenswere
added using the BALL C++ library (Kohlbacher and Lenhof, 2000), which
was also used to manipulate rotamers. All non-protein atoms were ignored.
Each choice of rotamerswas converted to athree-dimensional structure using
the given backbone atoms and the stock side chains from (Kohlbacher and
Lenhof, 2000). For all computations, the backbone, alanines and glycines
were held fixed.

Dead-end elimination

In the cases where ILP was necessary, we first processed the problem
instances with DEE; no such processing was performed before running the
LP. We implemented the Goldstein DEE condition from (Goldstein, 1994),
which says that a rotamer u € V; can be thrown out if there is some other

Template/ Seq Var Rot Size Time
target id len (ILP)
laac/1id2 62 86 1608 82 14
laac/2b3i 29 87 1242 73 13
1aho/1dq7 50 53 719 14 4
1b9o/1f6r 75 114 1999 111 24
1c9o/1csp 82 53 1076 56 7
1c90/1g6p 61 54 1409 60 13
1c9o/1Imjc 57 52 862 48 3
lcc7/1fed 37 62 1222 60 13
1cku/leyt 87 61 1095 58 10
1cku/3hip 73 65 1079 59 12
ctj/1c6r 79 64 1030 62 7
1ctj/1cyj 64 66 1291 69 10
Ictj/Af1f 46 64 1219 62 9
1czp/ldoy 73 81 990 69 8
1czpl4fxc 79 81 961 70 6
1d4t/1luk 31 93 1877 91 26 (1)
ligd/ifcl 75 51 899 48 7
1ligd/1mi0 78 49 723 44 3
Imfm/1b4l 54 117 1978 105 23
1mfm/1cob 80 119 1980 108 19
1Imfm/1xso 65 114 1826 104 16
1plc/1byo 71 79 1131 70 7
1plc/1jxf a4 77 1093 64 8
1qj4/1e89 75 220 4154 218 120
1qg4/1hpg 34 139 1514 105 14
1qu9/1j7h 75 101 1885 97 27
1qu9/1qd9 49 104 1749 97 19(2)
Ircf/1czh 69 140 2151 135 38
1vfy/lhyj 40 57 1060 53 9
3lzt/2mef 59 105 2320 108 52
5p21/1kao 49 147 2977 148 71
Trsallbsr 81 110 2242 104 41
7rsallrra 67 112 2111 104 42

Template gives the PDB identifier for the protein used as the template backbone, and
Target gives the PDB identifer of the protein for which the structure is to be predicted.
Seq id gives percentage identity between template and target protein sequences, Var len
givesthenumber of sidechainsthat arevaried, and Rot givesthetotal number of rotamers
considered. Sizeis the log,, of the search space size. Time is the time in seconds that
CPLEX takes to solve the LP. For non-integral solutions, the time to solve the ILP is
given in parenthesis.

rotamer v € V; such that

Euu - Euu + Z min (Euw - va) > 0
iz e
The rotamers u are selected in sequence starting with an arbitrary rotamer.
Every possible v istested to seeif the above condition hold. Thisprocessstops
when a pass through the rotamers finds none that can be removed. None of
the problems considered here converge when this simple DEE process is
applied.

Energy function

All the energy functions considered consist of arotamer self-energy term and
a pairwise rotamer interaction term. For the basic energy function, used for
al computations unless otherwise specified, pairwise rotamer energies are
computed using van der Waals interactions, and self-energies are computed
using both statistical potentials and van der Waals interactions. The basic
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energy function is similar to that of the Scwrl package (Bower et al., 1997),
though we use a more realistic van der Waals term.

Van der Waals interactions between rotamers The pairwise van der
Waals interaction energy between rotamers u and v is the sum of the van der
Waal s interactions between the side-chain atoms of « and v. We use the 6-12
Lennard-Jones formulation of the van der Waals force. The parameters used
in the van der Waals force are those of AMBER96 except the hydrogen radii
arereduced by 50% to account for their uncertain position. Asin AMBER96,
for atoms separated by three bonds (14 pairs), van der Waals interaction
parameters are reduced by half, and there is no van der Waals contribution
between atoms separated by fewer than three bonds. Each atom—atom inter-
action is capped at 100 kcal/mol. As an optimization, the van der Waals
interactions are taken to be zero at distances longer than 10 A and residues
are assumed not to interact if their C4 atoms are farther apart than 8.0 A
plus the longest possible extensions of their side chains. Any value less than
10-8isconsidered to be 0. These approximations generally haveinsignificant
effects on the calculated energies.

Van der Waals interactions in self-energy terms For each rotamer,
the van der Waals energy is computed (as described above) between each
of its atoms and all the fixed backbone atoms in the system except those
corresponding to the current residue and the residues on either side of it. The
self-energy also includes the van der Waals interactions with atoms in fixed
residues.

Satistical self-energies For each amino acid i in a particular backbone
setting, let p;, bethefraction of timesamino acid i isfound in rotamer «, and
i, bethefraction of timesamino acidi isinitsmost common rotamer. These
values are obtained from the rotamer library (Dunbrack and Karplus, 1993).
Asin (Bower et al., 1997), the statistical self-energy term for a particular
rotamer u isgiven by — In(p;, / pi,), S0 that the more common arotamer, the
lower the energy assigned to it.

Combining the statistical self-energieswith the van der Waalsinter-
actions In summing up the total energy of the system, the statistical
self-energy term isweighted by aconstant C that is the relative weighting of
itin comparison to the physical van der Waalsterm. The choiceof C can have
alarge effect on the accuracy of the solution and the ease with which it can
befound. C can bethought of astheinertiafor aresidueto remaininahighly
favored side-chain conformation. To calibrate C, five proteins of varied struc-
ture (laac, 1aho, 1cex, 1ctj and ligd) were selected from the test set. The
LP/ILP agorithm was applied to each for values of C ranging between 0.5
and 100. Figure 1 shows the average side-chain root mean squared deviation
(rmsd) over the five proteins for various values of C. It isbest to set C to the
smallest value that works well so as to use as much information about the
specific fold as possible. C = 10 was taken to be agood choice.

Evaluating predicted structures

For each protein, we compare the predicted side-chain conformations with
those found in its crystal structure. We use two measures of accuracy. First,
we compute the percentage of x1 side-chain dihedral angles predicted within
20° of the native structure, and the percentage of both x; and x2 side-
chain dihedral angles predicted within 20° of native. Second, we compute
the rmsd between the predicted structure and the crystal structure. When
positioning side chains on native backbones, rmsd is computed between
corresponding side-chain atoms only. When positioning side chains of a
target protein on a homologous backbone, the native backbone of the tar-
get protein and the homologous backbone are first fit together using all the
non-hydrogen atoms in both structures (McLachlan, 1982; Martin, 2001,
http://www.bioinf.org.uk/software/profit), and then rmsd is computed over
the side-chain atoms.

Because performance can vary greatly depending on the location of the
residue in the protein, in addition to evaluating predictions over all residues,
we report performance over only core residues, defined to be those that have
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Fig. 1. The average rmsd over five proteins for various values of C.

<10% of their possible surface area exposed in the crystal structure. For
each residue, exposed surface area is determined as a percentage of the sur-
face area of the residue in isolation using the Surfv package (Nicholls et al.,
1991).

COMPUTATIONAL RESULTS

We test the hardness of SCP instances and evaluate the LP/ILP
approach on problems resulting from three applications: predicting
the conformations of a protein’s side chains on its native backbone,
predicting the structure of a protein using the backbone of a homo-
logous sequence as atemplate, and designing a protein sequence for
agiven backbone.

Native backbone tests

For the each of 25 proteinsin Table 1, we ran the LP/ILP approach
to predict side-chain conformations on native backbones. We used
the native protein sequence from the PDB file and alowed each
residue to assume all the rotamers listed in the library for the given
amino acid and ¢, ¥ backbone angles. This resulted in search
spaces with up to 1028 possibilities. Using the basic energy func-
tion described in the previous section, all problems returned optimal
integral solutions using LP, and it was not necessary to use the
more computationally expensive ILP formulation. The total CPU
time for solving the 25 LPs using formulation (IP2) was under
12 min; this is approximately 13 times faster than when using the
formulation (1P1).

To ensurethat the energy function produces meaningful structures,
we compare the side-chain conformations predicted by the LP with
the side-chain conformationsin the crystal structure (Table 3). Over
all theresidues, wefind that 80% of x; anglesand 51% of the x; and
x2 angles are predicted within 20° of native. For just core residues,
our approach leads to 87% of x; angles and 62% of the x; and
x2 angles predicted correctly. Additionally, our method obtains an
average rmsd per protein of 1.553 A. This is comparable with val-
ues obtained when running the widely used Scwrl package (version
2.9) (Bower et al., 1997) (Table 3) and with what isreported in Xiang
and Honig (2001) when using the same rotamer library (on adlightly
different test set).

Overall, our testing on native backbones shows that when using a
simplified energy function, LP can readily obtain optimal solutions
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Table 3. Prediction of side-chain conformations on native backbones, with
a comparison of the LP/ILP prediction with those of other methods and the
crystal structure

Table4. Prediction of side-chain conformations using homology modeling,
with a comparison of the L P/ILP prediction with those of other methods and
the crystal structure

Core residues All residues Coreresidues (A) All residues (A)
(@ LPILP x1/x142 87%/62% 80%/51% (@ LPILPrmsd 2177 3.230
(b) Sewrl x1/x1+2 88%/60% 80%/49% (b) Scwrl rmsd 2.137 3.260
(c) LP/ILP rmsd 1079A 1553 A (c) Backbone rmsd 1.385 1.978
(d) Sewrl rmsd 1170A 1.649 A

All values are averaged over the 25 proteins of Table 1. (a) The percentage of residues
over al proteinsfor which LP/ILP predicted conformation hasthe x; and x1.2 dihedral
angles within 20° of the native structure; (b) these values for Scwrl; (c) the rmsd of
the predicted side-chain conformations from those of the native side chains using the
LP/ILP method; and (d) these are values for Scwrl.

with respect to the energy function, and that these optimal solutions
correspond to predicted structures of quality similar to that of other
popular approaches.

Homology modeling

We next explore the combinatorial problems associated with homo-
logy modeling. The 33 pairs of homologous proteins considered,
their percentage sequence identity, and the rmsd between their
backbones are shown in Table 2.

We solved the resulting LP formulations for all 33 problems; this
took under 12 min of CPU time. The LP found optimal solutions for
31 of the 33 pairs. For only two template/target pairs, 1d4t/1luk and
1qu9/1qd9, the optimal L P solutionswere not integral. For thesetwo
problems, the optimal integral solution was found using DEE and
the integer programming algorithm of CPLEX. A good measure of
how closethe L P relaxation objectiveisto the optimal solutionisthe
relative gap, defined as.

JOPT — Ip|

100
|OPT]

@)

where OPT isthe energy value of the optimal integral solution and Ip
is the optimal objective for the LP relaxation. The relative gaps for
both 1d4t/1luk and 1qu9/1qd9 were fairly small (0.207 and 15.260,
respectively), and the total time for solving these two integer linear
programs was <1 min.

In order to show that the basic energy function is useful in the
homology modeling scenario, we report the accuracies of our pre-
dicted structures. We computed the side-chain rmsd between the
target and predicted structures, as well as the side-chain rmsd
obtained by the Scwrl rotamer choices. The average side-chain rmsd
obtained by the LP/ILP approach with the basic energy function is
3.230 A, which is competetive with Scwrl’s performance of 3.260 A
when run on the same test set (Table 4).

For these tests, we did not optimize many important aspects of
homology modeling, such as choosing the homolog with the most
similar sequence or correcting alignments, hence the results should
not be taken to be the best possible for any of the methods. However,
the use of asimplified energy function resultsin predicted structures
that arebiologically reasonable. Additionally, optimal solutionswith
respect to this energy function are easily found using the LP/ILP
approach.

All values are averaged over the 33 problems of Table 2. (a) The rmsd between just side-
chain atoms when comparing the LP/ILP predicted structure with the crystal structure;
(b) this value when comparing the Scwrl predictions with the native structure; and (c)
thermsd between template and target structureswhen only considering backbone atoms.

Protein design

We considered the problem of designing novel sequences that fold
into known backbones. We partitioned the amino acids into the fol-
lowing classes: AVILMF/HKR /DE/TONS/WY /P/C/G.
For each of the 25 proteinsin our native test set (Table 1), we fixed
the surface residues and the native backbone and allowed the core
residues to assume any rotamer of any amino acid in the same class
as the native residue. We focused on core residues since the basic
energy function optimizes primarily van der Waals interactions. The
sizes of the resulting problems are shown in Table 5.

When applying L Pto the resulting problemswith the basic energy
function, only 6 out of 25 solutions had integral solutions. Thus,
from the perspective of this LP, the design problem is more difficult
than fitting side chains on native and homologous backbones. CPU
time for solving the the 25 LP problems was approximately 20 h,
with one protein (1gj4) taking ~10.5 h.

To obtain optimal solutions for the 19 proteins with non-integral
solutions, we apply DEE and then run the ILP solver of CPLEX.
When solving the L P, CPLEX, in addition to using many other heur-
istics, solvesseveral linear programsthat are subproblems of the ILP
(these subproblems are referred to as the branch-and-bound nodes).
The number of such subproblems is a very rough indication of the
computational effort expended by CPLEX. The number used for the
design problemsisshowninthe' N’ column of Table5. For several of
the problems, many branch-and-bound nodes were needed. CPLEX
was able to find the optimal integral solutions to all the problems
in ~138 h. Nearly al of that time (125 h) was spent on the largest
problem, 1qj4; the other 18 problemstook only 13 h of computation.

Thebest way to test adesigned sequenceisto makethe proteinand
confirm its structure and/or biological properties (e.g. Dahiyat and
Mayo, 1997; Harbury et al., 1998; Malakauskas and Mayo, 1998;
Looger et al., 2003; Klepeis et al., 2003; Lilien et al., 2004); thisis
beyond the scope of this paper. However, the basic energy function
is reasonable for designing protein cores as it focuses on van der
Waal interactions, and the use of other energy functionsis not likely
to make the problem easier (see below). Thus, while the LP/ILP
approach found optimal solutions for these protein design problems,
our analysis showsthat protein design problems are likely to be con-
siderably more difficult to solve than homology modeling problems.

Other energy functions

We also investigated how changing the energy function affects the
ability of LPto find optimal solutions. For five proteinsfrom Table 1
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Table 5. Proteins for which the core was redesigned

Prot. Var Rot Size  Time Rel N
len (ILP) gap

laac 38 2153 62 3.3e2(1.3e2) 2.630 4
1aho 18 668 22 44 Integral

1b% 48 1842 69 2.4e2 (9.4) 1.099 0
1c5e 25 1369 42 5.8el Integral

1c9 14 757 24 9.1€l (4.6e1) 3.936 34
lcc7 18 866 29 9.5el (2.4) 0.272 0
lcex 78 3926 126 2.6e3 (7.0e2) 0.913 30
1cku 22 897 31 8.8 Integral

1ctj 24 1262 40 2.8el Integral

1cz9 53 2664 87 1.2e3 (3.2e2) 0.702 27
1czp 30 1475 47  44e2(14e2)  1.202 39
1d4t 32 1691 52 1.8e2 (8.9¢1) 1.039 33
ligd 11 552 18 34 Integral

Imfm 46 3215 80 6.5€3 (5.4€3) 3.234 233
Iplc 33 1691 54 4.7€2 (1.3e2) 3.991 8
1qj4 124 6655 201 3.8e4 (4.5€5) 2.677 7293
1qg4 72 3500 115 1.5e3 (6.9e2) 4.272 38
1gtn 49 2181 74 2.6€2 (7.0el) 0.558 8
1qu9 43 2057 70 2.3e2 (6.4) 0.162 2
Ircf 65 3189 105 2.7€3 (9.6e1) 0.053 0
1vfy 15 665 20 4.0 Integral

2pth 76 4395 127 1.1e4 (2.4e4) 2.115 1623
3lzt 48 1940 71 4.2e2 (3.9e2) 3.445 45
5p21 70 3624 114 4.1€3 (1.3e4) 2.259 1453
7rsa 46 1993 66 5.7€2 (1.4el) 0.120 0

Var len gives the number of core positions that were allow to vary, and Rot gives the
total number of rotamers considered. Size is the log,, of the search space size. Time
is the number of seconds CPLEX spent solving the LP, and given in parentheses, the
time for solving the ILP. Rel gap gives the relative gap, as defined in Equation (2), and
isameasure of how far the energy of the solution of the LP is from that of the optimal
rotamer choice. N gives the number of subproblems CPLEX considered in finding the
optimal choice of rotamers.

(1c90, 1czp, 1d4t, 1qgtn and 1vfy), we fit side chains on their native
backbones using two additional energy function variants.

In the first variant, the self-energies include the van der Waals
interactions with the backbone (as before), but the statistical term
is replaced by a torsion term as well as intra-side-chain van der
Waals interactions. These self-energy terms are meant to measure
the local favorability of a side-chain conformation. The pairwise
interaction energies between rotamers consist of only van der Waals
interactions.

The second variant is the same as the first, except that the self-
energiesinclude electrostatic interactions with the backbone and the
pairwise energies include electrostatic interactions between side-
chains. In all cases, the electrostatic interactions were modeled
using the distance-dependent electrostatic component (¢ = r) of
the AMBER96 force field.

In contrast to the basic energy function, for which 100% of the
solutions were integral, the L P finds optimal solutions for only 60%
(three out of five) of the proteins using either variant of the energy
function. Thus, small changes in the energy function can influence
the ease with which solutions are found. We note that ILP can till
find optimal solutions for these problems, and additionally that the
basic energy function gives the best accuracy over these proteins
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Fig. 2. Relative gap between the optimal solution (with value OPT) and the
nine next lowest-energy solutions (wherethei-th solution hasvalue x;). Inset
shows relative gaps for the 100 lowest-energy solutions for laac. Relative
gap at each iteration i is defined as 100(|OPT — x;|/|OPT).

(1.634 A average rmsd versus 2.069 and 2.409 A for variants 1 and
2, respectively).

Obtaining multiple solutions

By adding constraints (1) to the integer program, we can look at an
ensemble of provably near-optimal solutions. Near-optimal solutions
can be used to generate several candidates for protein design, as
well as to analyze the energy landscape and gauge the difficulty of
the global optimization problem. We found the 10 lowest-energy
solutions for four proteins (1aho, 1cex, 1ctj and ligd) and the 100
lowest-energy solutions for 1aac, using the basic energy function to
fit each sequence onto its native backbone. Since at each step we are
excluding al previously found solutions, each successive solution
takes longer to find. The relative gap [Equation (2)] between each
successive solution and the global optimum is plotted in Figure 2.
These gaps are very small, and from the point of view of this energy
function, any of several solutions perform similarly. This indicates
that even though LP has no difficulty finding optimal solutions, no
one choice of rotamers clearly stands out as the right one.

DISCUSSION

Our experiments suggest that mathematical programming should
become awidely used technique for attacking SCP in the context of
both homol ogy modeling and protein design. Thedescribed approach
exploits general, highly developed optimization machinery, and it
is likely that problems much larger than those studied here can be
solved by employing faster hardware and more effectively exploiting
the CPLEX package (e.g. using parallelized versions of the software,
or specifying alternate strategies for branching and node selection).
Theaddition of validinequalitiesin abranch and cut framework asin
Althauset al. (2000) might further speed up solution of the problems.

For even larger problems, further specialized optimizations may
be necessary. Asafirst step, we have shown how to reducethe size of
the ILP dramatically, without compromising optimality, by exploit-
ing thefact that in protein structures amino acids do not interact with
other amino acidsthat arefar away in 3D. Furthermore, in practice, to
solve large instances optimally, we would suggest first running basic
DEE, andthenfollowingwith either LPor IL P. Weal so notethat some
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of thetechniquesdevel oped for DEE canbeincorporated directly into
ILP if necessary. For example, we can disallow choosing a certain
pair of rotamers (between positions that have some positive pairwise
rotamer energy between them) by removing the corresponding edge
variable from the objective function and constraints. Alternatively,
the LP/ILP approach can be applied in cases where the DEE proced-
ure does not converge to asingle solution. Finally, as compared with
other methods, the LP/ILP approach is simple to model and flexible
enough to extend easily. For example, we have already shown how
to use ILP to obtain successive near-optimal solutions.

Our analysis suggests that protein design problems are consid-
erably more difficult to solve than homology modeling problems.
For native-backbone and homology modeling, optimal, biologically
realistic solutions can usually be found quickly using a simple LP
relaxation. For protein design, fewer solutions of the LP relaxa
tion are integral, even with the same energy function. As suggested
by Gordon et al. (2002), similar-sized side-chain repacking and pro-
tein design problems have different characteristics. For repacking
side chains on backbones, there are many positions with few rot-
amer choices, whereasfor proteindesign, therearefew positionswith
many rotamer choices. From a computational viewpoint, our results
suggest that efforts to improve the optimization scheme should be
focused on design problems.

We aso find that the choice of energy function affects the ease
with which optimal solutions are found using LP. For positioning
side chains on native and homol ogous backbones, optimal solutions
using the basic energy function are found quickly (typically in poly-
nomial time), and this energy function yields good solutions (better
than the other energy function variants considered in our tests). This
suggeststhat evenif alternate energy functionsarerequired, it may be
beneficial to use an energy function such as the one considered here
for which optimal solutions are readily found. These solutions can
then be used as starting points for an iterative procedure such as that
given by Xiang and Honig (2001) or for heuristic search algorithms
[e.g. asin the original Scwrl program (Bower et al., 1997)].

Several other authors have considered the combinatorial difficulty
of SCP in the context of packing side chains onto native back-
bones. An excellent, exhaustive study on side-chain positioning has
used very different reasoning to argue that the associated combin-
atorial problem appears not to be that difficult (Xiang and Honig,
2001). This study considers packing side chains on native back-
bones, and shows empirically that predicting the conformation of a
single side chain whilefixing al othersin their native conformations
is only dightly more accurate than the simultaneous prediction of
all side chains. Unlike when integral solutions are found using our
approach, their computational approach cannot guarantee that they
have found a minimum energy solution according to their energy
function. Eriksson et al. (2001) also use an ILP formulation to sug-
gest that the SCP problem is easy; they apply the method to asingle
protein (lambda repressor protein) and find that the solution of the
relaxed linear program always seems to be integral, even for arti-
ficia ‘nonsense’ energy functions. The hardness result (Pierce and
Winfree, 2002; Chazelle et al., 2004) suggests this is unlikely to
be true for al energy functions and proteins, and indeed the LP
approach does find non-integral solutions for two of the homology
modeling cases in our dataset. On the other hand, others (Gordon
et al., 2002) have argued that it is important to consider the pre-
cise energy function being optimized; our results are consistent with
this view.

Inlight of the hardnessresults (Pierce and Winfree, 2002; Chazelle
et al., 2004), it isclear that the frequent integrality of the LP formu-
lation in our experiments is not a result of the general structure of
the problem but instead is a feature of the properties of the pro-
teins and energy functions studied. It is well known that if the
congtraint matrix for an LP is totally unimodular (e.g. as in for-
mulations for shortest path or max-flow problems), the LP has
integer optimal solutions. This is not the case here, however, as
changing only the energy function can change whether integral solu-
tionsarefound. Nevertheless, the constraint matrices are sparse, and
perhaps the LP is exploiting some other type of underlying struc-
ture. An intriguing open question is to uncover what features of
side-chain positioning allow LP and ILP to find optimal solutions
quickly.
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