Overview

What is recursion?
- When one function calls ITSELF directly or indirectly.

Why learn recursion?
- Powerful programming tool to solve a problem by breaking it up into one (or more) smaller problems of similar structure.
- Many computations are naturally self-referential.
 - a Unix directory contains files and other directories
 - linked lists

Implementing Functions

How does the compiler implement functions?
- Return from functions in last-in first-out (LIFO) order.
- FUNCTION CALL: push local environment onto stack.
- RETURN: pop from stack and restore local environment.
A Simple Example

Goal: function to compute $0 + 1 + 2 + \ldots + n$.

- Simple ITERATIVE solution.

iterative sum 1

```c
int sum(int n) {
    int i, s = 0;
    for (i = 0; i <= n; i++)
        s += i;
    return s;
}
```

iterative sum 2

```c
int sum(int n) {
    int s = n;
    while (n--)
        s += n;
    return s;
}
```

Note that changing the variable n in `sum` does not change the value in the calling function.

A Simple Example

Goal: function to compute $0 + 1 + 2 + \ldots + n$.

- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.

recursive sum

```c
int sum(int n) {
    if (n == 0) return 0;
    return n + sum(n-1);
}
```

This is just a stupid example to illustrate recursion.

- Don’t even need iteration, let alone recursion.
- $0 + 1 + 2 + \ldots + n = n(n+1) / 2$

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.

- The program will not “bottom-out” of recursion without a base case.
- Analog of infinite loops with for and while loops.

mystery(n)

```c
int mystery(int n) {
    if (n % 2 == 0)
        return mystery(n/2);
    else
        return mystery(3*n + 1);
}
```

no base case
A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.

REDUCTION STEP makes input converge to base case.
- Unknown whether program terminates for all positive integers n.
- Stay tuned for Halting Problem in Lecture T4.

```
int mystery(int n) {
    if (n == 0)
        return 1;
    else if (n % 2 == 0)
        return mystery(n/2);
    else
        return mystery(3*n + 1);
}
```

mystery(n)

<table>
<thead>
<tr>
<th>mystery(n)</th>
</tr>
</thead>
</table>
| int mystery(int n) {
| if (n == 0)
| return 1;
| else if (n % 2 == 0)
| return mystery(n/2);
| else
| return mystery(3*n + 1);
| }

Exponentiation

Goal: function to compute X^n, for positive integers x, n.
- Simple ITERATIVE solution.

```
int power(int x, int n) {
    int prod = 1;
    while (n--)
        prod *= x;
    return prod;
}
```

Number Conversion

To convert an integer N to binary:
- Stop if N = 0.
- Write “1” if N is odd; “0” if n is even.
- Move pencil one position to left.
- Convert N / 2 to binary. (integer division)

```
void convert(int N) {
    if (N == 0) return;
    convert(N / 2);
    printf("%d", N % 2);
}
```

Recursive Number Conversion

Computer naturally prints from left to right.
- So we need to convert N / 2.
- Then write “0” or “1”.

```
convert(43)
convert(21)
convert(10)
convert(5)
convert(2)
convert(1)
convert(0)
printf("1")
printf("0")
printf("1")
printf("0")
printf("1")
printf("1")
```

Check: $43 = 1 \times 2^5 + 0 \times 1^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$

$= 32 + 8 + 2 + 1$

Easiest way to convert to binary by hand.
- Corresponds directly with a recursive program.
Recursive Number Conversion

Computer naturally prints from left to right.
- So we need to convert \(N / 2 \).
- Then write “0” or “1”.

Proof of correctness:
\[
N = 2 \times (N / 2) + (N \mod 2)
\]

Convert to any base \(b \leq 10 \).
- Exercise: extend to handle hexadecimal (base 16).

```
void convert(int N) {
    if (N == 0) return;
    convert(N / 2);
    printf("%d", N % 2);
}
```

1 if \(N \) is odd; 0 if \(N \) is even

Exponentiation

Goal: function to compute \(X^n \), for positive integers \(x, n \).
- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.
- Both require \(n \) multiplications, but can do with \(n/2 + 1 \) if \(n \) is even.

```
int power(int x, int n) {
    if (n == 0) return 1;
    int t = power(x, n/2);
    if (n % 2 == 0) return t * t;
    return x * t * t;
}
```

1 multiplication

23 multiplications using previous algorithm

Exponentiation

Goal: function to compute \(X^n \), for positive integers \(x, n \).
- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.
- Both require \(n \) multiplications, but can do with \(n/2 + 1 \) if \(n \) is even.
- Only \(2 \log_2 n \) multiplications needed with divide-and-conquer!

```
if (n == 0) return 1;
int t = power(x, n/2);
if (n % 2 == 0) return t * t;
return x * t * t;
```
Root Finding

Given a function, find a root, i.e., a value x such that $f(x) = 0$.

- $f(x) = x^2 - x - 1$
- $\phi = \frac{1 + \sqrt{5}}{2} = 1.61803...$ is a root.

Assume f is continuous and you know l, r, such that $f(l) < 0.0$ and $f(r) > 0.0$.

Reduction step:
- Maintain interval $[l, r]$ such that $f(l) < 0$, $f(r) > 0$.
- Compute midpoint $m = (l + r) / 2$.
- If $f(m) < 0$ then run algorithm recursively on interval is $[m, r]$.
- If $f(m) > 0$ then run algorithm recursively on interval is $[l, m]$.

Progress achieved at each step.
- Size of interval is cut in half.

Base case (when to stop):
- Ideally when $f(m) == 0.0$, but this may never happen!
 - root may be irrational
 - machine precision issues
- Stop when $r - l$ is sufficiently small.
 - guarantees m is sufficiently close to root

Recursive bisection function

```c
#define EPSILON 0.000001

double f (double x) {
    return x*x - x - 1;
}

double bisect (double left, double right) {
    double mid = (left + right) / 2;
    if (right - left < EPSILON || f(mid) == 0.0)
        return mid;
    if (f(mid) < 0.0)
        return bisect(mid, right);
    return bisect(left, mid);
}
```

Fundamental problem in mathematics, engineering.
- to find minimum of a (differentiable) function, need to identify where derivative is zero.
- Other methods.
 - Newton’s method.
 - Steepest descent.
Traveling Salesperson Problem

Given N points, find a shortest tour connecting them.

- Brute force approach is to try all N! possible permutations.
- If cities are named a, b, c, then 6 possible permutations are: abc, acb, bac, bca, cab, cba.
- Not easy to do without recursion.

Key idea: permutations of abcde look like:
- End with a preceded by one of 4! permutations of bcde.
- End with b preceded by one of 4! permutations of acde.
- End with c preceded by one of 4! permutations of abde.
- End with d preceded by one of 4! permutations of abce.
- End with e preceded by one of 4! permutations of abcd.

Reduces enumerating permutations of N elements to enumerating permutations of N-1 elements.

Recursive solution for trying all permutations:
- Use array a to store current permutation in a[1], ..., a[N]
- N denotes number of cities whose position has not been determined.

```
void visit(int N) {
    int i;
    if (N == 1) {
        checklength();
        return;
    }
    for (i = 1; i <= N; i++) {
        swap(i, N); visit(N-1);
        swap(N, i);
    }
}
```

Traveling Salesperson Problem

Recursive solution for finding best TSP tour.
- Takes N! steps.
- No computer can run this for large value of N.
- For N = 100, 100! > 10^{150}.

Is there an efficient way to do this computation?

Possible Pitfalls With Recursion

Is recursion fast?
- Yes. We produced remarkably efficient program for exponentiation.
- No. Can easily write remarkably inefficient programs.

Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

It takes a really long time to compute F(20).

```
int F(int n) {
    if (n == 0 || n == 1) return n;
    else return F(n-1) + F(n-2);
}
```
Possible Pitfalls With Recursion

F(8) is recomputed 2 times.
F(7) is recomputed 3 times.
F(6) is recomputed 5 times.
F(5) is recomputed 8 times.
...
F(1) is recomputed 12,555 times.

Requires F(n) recursive calls to compute F(n).

Fibonacci function using dynamic programming

```c
int F(int n) {
    if (knownF[n] != 0) return knownF[n];
    else if (n == 0 || n == 1) return n;
    else knownF[n] = F(n-1) + F(n-2);
    return knownF[n];
}
```

\[\text{knownF is an array that stores } F(n) \text{ in } n^{th} \text{ element. We assume } F(0) = 0, F(1) = 1. \]

Uses only 2n recursive calls to compute F(n).

Recursion vs. Iteration

Fact 1. Any recursive function can be written with iteration.
- Compiler implements recursion with stack.
- Can avoid recursion by explicitly maintaining a stack.

Fact 2. Any iterative function can be written with recursion.
- LISP programming language has only recursion.

Should I use iteration or recursion?
- Consider ease of implementation.
- Consider time/space efficiency.

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
- Only one disc may be moved at a time.
- A disc can be placed either on an empty peg or on top of a larger disc.
- Legend: world will end when monks accomplish this task with 40 golden discs on 3 diamond pegs.

Towers of Hanoi demo
Towers of Hanoi: Recursive Solution

- Move N-1 discs 1 peg to right.
- Move largest disc 1 peg to left.
- Move N-1 discs 1 peg to right.

void HanoiRight(int N) {
 if (N == 0) return;
 HanoiLeft(N-1);
 ShiftRight(N);
 HanoiLeft(N-1);
}

void HanoiLeft(int N) {
 if (N == 0) return;
 HanoiRight(N-1);
 ShiftLeft(N);
 HanoiRight(N-1);
}

void ShiftLeft(int N) {
 printf("Shift disc %d one peg to left.\n", N);
}

void ShiftRight(int N) {
 printf("Shift disc %d one peg to right.\n", N);
}

int main(void) {
 HanoiLeft(4);
 return 0;
}

% gcc hanoi.c
% a.out

Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 3 one peg to right.
Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 4 one peg to left.
Move disc 1 one peg to right.
Move disc 2 one peg to left.
Move disc 1 one peg to right.
Move disc 3 one peg to right.
Move disc 1 one peg to right.
Move disc 2 one peg to left.

Unix
Towers of Hanoi

Is world going to end (according to legend)?
- Monks have to solve problem with $N = 40$ discs.
- Computer algorithm should help.
 - not really - takes $2^N - 1$ steps
 - assuming rate of 1 disc per second, will take 348 centuries

Better understanding of recursive algorithm supplies non-recursive solution!
- Alternate between two moves:
 - Make only legal move not involving smallest disc

- See Sedgewick 5.2.

Summary

How does recursion work?
- Just like any other function call.

How does a function call work?
- Save away local environment using a stack.

Trace the executing of a recursive program.
- Use pictures.

Write simple recursive programs.
- Base case.
- Reduction step.