6.5 REDUCTIONS

- introduction
- designing algorithms
- establishing lower bounds
- classifying problems
- intractability

Exercise

Imagine that founding father Alexander Hamilton* has offered to find a Hamiltonian cycle in any given graph (if one exists).

Design an efficient algorithm to find a Hamiltonian path in a graph (if one exists) by making queries to Hamilton.

Solution. Given graph \(G = (V, E) \):

- Query Hamilton with \(G \).
 - If cycle found, remove last vertex and return rest.
- For every nonexistent edge \(e \notin E \):
 - Query Hamilton with \((V', E \cup \{e\})\)
 - If cycle found, “rotate” it so that final two vertices are incident on \(e \); remove final vertex and return the rest. The cycle must traverse \(e \). Why?
- Return “no Hamiltonian path”.

Why is this correct?

*Hamiltonian cycle/path are named after William Rowan Hamilton.

Reductions: overview

Main topics.
- Reduction: relationship between two problems.
- Algorithm design: paradigms for solving problems.

Shifting gears.
- From individual problems to problem-solving models.
- From linear/quadratic to polynomial/exponential scale.
- From implementation details to conceptual frameworks.

Goals.
- Place algorithms and techniques we've studied in a larger context.
- Introduce you to important and essential ideas.
- Inspire you to learn more about algorithms!

Reductions: practical tip

Reductions require ingenuity, but a few tricks recur. Practice them.
6.5 Reductions

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Ex 1. [finding the median reduces to sorting]
To find the median of N items:
- Sort the N items.
- Return item in the middle.

Cost of finding the median. $N \log N + 1$.

Ex 2. [element distinctness reduces to sorting]
To solve element distinctness on N items:
- Sort the N items.
- Check adjacent pairs for equality.

Cost of element distinctness. $N \log N + N$.

Reduction Cost of solving $X = \text{total cost of solving } Y + \text{cost of reduction.$
Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

![Reduction Diagram](image)

Confusing terminology. CS professors often slip up. **Novice error.** Confusing X reduces to Y with Y reduces to X.

Reductions: quiz 1

Which of the following reductions have we encountered in this course?

I. MAX-FLOW reduces to MIN-CUT.
II. MIN-CUT reduces to MAX-FLOW.

A. I only.
B. II only.
C. Both I and II.
D. Neither I nor II.
E. I don’t know.

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that solves Y to help solve X.

Design algorithm. Given an algorithm for Y, can also solve X.

More familiar reductions.
- MinCut reduces to maxflow.
- Arbitrage reduces to negative cycles.
- Bipartite matching reduces to maxflow.
- Seam carving reduces to shortest paths in a DAG.
- Burrows-Wheeler transform reduces to suffix sort.

Reasoning. Since I know how to solve Y, can I use that algorithm to solve X?

programmer’s version: I have code for Y. Can I use it for X?
Convex hull reduces to sorting

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points of the convex hull (in counterclockwise order).

Proposition. Convex hull reduces to sorting.

Pf. Graham scan algorithm.

Cost of convex hull. $N \log N + N$.

Graham scan demo

- Choose point p with smallest y-coordinate.
- Sort points by polar angle with p.
- Consider points in order; discard those that create clockwise turn.
Graham scan demo

- Choose point p with smallest y-coordinate.
- Sort points by polar angle with p.
- Consider points in order; discard those that create clockwise turn.

Graham scan demo

- Choose point p with smallest y-coordinate.
- Sort points by polar angle with p.
- Consider points in order; discard those that create clockwise turn.
Graham scan demo

- Choose point \(p \) with smallest \(y \)-coordinate.
- Sort points by polar angle with \(p \).
- Consider points in order; discard those that create clockwise turn.
Graham scan demo

- Choose point \(p \) with smallest \(y \)-coordinate.
- Sort points by polar angle with \(p \).
- Consider points in order; discard those that create clockwise turn.

Graham scan demo

- Choose point \(p \) with smallest \(y \)-coordinate.
- Sort points by polar angle with \(p \).
- Consider points in order; discard those that create clockwise turn.
Graham scan demo

- Choose point \(p \) with smallest \(y \)-coordinate.
- Sort points by polar angle with \(p \).
- Consider points in order; discard those that create clockwise turn.
Graham scan demo

- Choose point p with smallest y-coordinate.
- Sort points by polar angle with p.
- Consider points in order; discard those that create clockwise turn.
Some reductions in combinatorial optimization

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.

Ex. In decision tree model, any compare-based sorting algorithm requires \(\Omega(N \log N) \) compares in the worst case.

Linear-time reductions

Def. Problem \(X \) linear-time reduces to problem \(Y \) if \(X \) can be solved with:
- Linear number of standard computational steps.
- Constant number of calls to \(Y \).

Establish lower bound:
- If \(X \) takes \(\Omega(N \log N) \) steps, then so does \(Y \).
- If \(X \) takes \(\Omega(N^2) \) steps, then so does \(Y \).
- Intuition: \(X \) = known problem; \(Y \) = new problem.

Reasoning.
- If I could easily solve \(Y \), then I could easily solve \(X \).
- I can't easily solve \(X \).
- Therefore, I can't easily solve \(Y \).
Which of the following reductions is not a linear-time reduction?

A. ELEMENT-DISTINCTNESS reduces to SORTING.
B. MIN-CUT reduces to MAX-FLOW.
C. HAMILTONIAN-PATH reduces to HAMILTONIAN-CYCLE.
D. BURROWS-WHEELER-TRANSFORM reduces to SUFFIX-SORTING.
E. I don't know.

Exercise: linear-time reduction

Imagine that founding father Alexander Hamilton has offered to find a Hamiltonian cycle in any given graph (if one exists).

Design an efficient algorithm to find a Hamiltonian path in a graph (if one exists) by making queries to Hamilton. The Treasury Secretary’s time is valuable, so you must minimize the number of queries.

Solution. Given graph \(G = (V, E) \):
- Add a virtual vertex \(v \) and connect it to all vertices.
- Query Hamilton with the resulting graph:

Why is this correct?
Lower bound for convex hull

Proposition. Sorting linear-time reduces to convex hull.

Pf. [see next slide]

<table>
<thead>
<tr>
<th>Sorting</th>
<th>Convex hull</th>
</tr>
</thead>
<tbody>
<tr>
<td>1251432</td>
<td>2861534</td>
</tr>
<tr>
<td>3988818</td>
<td>4190745</td>
</tr>
<tr>
<td>8111033</td>
<td>89885444</td>
</tr>
<tr>
<td>13546464</td>
<td>43434213</td>
</tr>
<tr>
<td>34435312</td>
<td>34435312</td>
</tr>
</tbody>
</table>

Implication. Any convex hull algorithm requires \(\Omega(N \log N) \) ops.

Sorting linear-time reduces to convex hull

Proposition. Sorting linear-time reduces to convex hull.

- **Sorting instance:** \(x_1, x_2, \ldots, x_N \).
- **Convex hull instance:** \((x_1, x_1^2), (x_2, x_2^2), \ldots, (x_N, x_N^2)\).

Pf.

- Region \{ \((x, y) : y \geq x^2\)\} is convex \(\Rightarrow\) all \(N\) points are on hull.
- Starting at point with most negative \(x\), counterclockwise order of hull points yields integers in ascending order.

Establishing lower bounds: summary

Establishing lower bounds through reduction is an important tool in guiding algorithm design efforts.

Q. How to convince yourself no linear-time CONVEX-HULL algorithm exists?

- **A1.** [hard way] Long futile search for a linear-time algorithm.
- **A2.** [easy way] Linear-time reduction from sorting.

Reductions: quiz 3

Our lower bound proof strategy for CONVEX-HULL would work even if:

- **A.** Our reduction invoked CONVEX-HULL \(\Theta(\log N)\) times instead of once.
- **B.** Our pre-/post-processing was linearithmic instead of linear.
- **C.** Both A. and B.
- **D.** Neither A. nor B.
- **E.** I don’t know.

Cost of solving SORTING = total cost of CONVEX-HULL + cost of reduction.
6.5 Reductions

- Introduction
- Designing algorithms
- Establishing lower bounds
- Classifying problems
- Intractability

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'. Suppose we could (could not) solve problem X efficiently. What else could (could not) we solve efficiently?

Bird’s-eye view

“Give me a lever long enough and a fulcrum on which to place it, and I shall move the world.” — Archimedes

Spreadsheet

<table>
<thead>
<tr>
<th>complexity</th>
<th>order of growth</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>N</td>
<td>$\min, \max, \text{median}$, Burrows-Wheeler transform, ...</td>
</tr>
<tr>
<td>linearithmic</td>
<td>$N \log N$</td>
<td>$\text{sorting, element distinctness, closest pair, Euclidean MST, ...}$</td>
</tr>
<tr>
<td>quadratic</td>
<td>N^2</td>
<td>?</td>
</tr>
<tr>
<td>exponential</td>
<td>e^N</td>
<td>?</td>
</tr>
</tbody>
</table>

Frustrating news. Huge number of problems have defied classification.

Classifying problems: summary

Desiderata. Problem with algorithm that matches lower bound.

Ex. Sorting and element distinctness have complexity $N \log N$.

Desiderata'. Prove that two problems X and Y have the same complexity.

- First, show that problem X linear-time reduces to Y.
- Second, show that Y linear-time reduces to X.
- Conclude that X has complexity $T(N)$ iff Y has complexity $T(N)$.

Even if we don’t know what it is...
Integer arithmetic reductions

Integer multiplication. Given two \(N \)-bit integers, compute their product. **Brute force.** \(N^2 \) bit operations.

\[
\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
\end{array}
\times
\begin{array}{cccc}
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

History of complexity of integer multiplication

<table>
<thead>
<tr>
<th>year</th>
<th>algorithm</th>
<th>order of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>brute force</td>
<td>(N^2)</td>
</tr>
<tr>
<td>1962</td>
<td>Karatsuba</td>
<td>(N^{1.385})</td>
</tr>
<tr>
<td>1963</td>
<td>Toom-3, Toom-4</td>
<td>(N^{1.565}, N^{1.404})</td>
</tr>
<tr>
<td>1966</td>
<td>Toom-Cook</td>
<td>(N^{1+\epsilon})</td>
</tr>
<tr>
<td>1971</td>
<td>Schönhage-Strassen</td>
<td>(N \log N \log \log N)</td>
</tr>
<tr>
<td>2007</td>
<td>Fürer</td>
<td>(N \log N 2^{O(\log N)})</td>
</tr>
</tbody>
</table>

number of bit operations to multiply two \(N \)-bit integers

Remark. GNU Multiple Precision Library uses one of five different algorithm depending on size of operands.

Lower bound for 3-COLLINEAR

3-SUM. Given \(N \) distinct integers, are there three that sum to \(0 \)?

3-COLLINEAR. Given \(N \) distinct points in the plane, are there 3 (or more) that lie on the same line?

\[
\begin{array}{cc}
590584 & -23439854 \\
1251432 & -2863534 \\
5988818 & -4190745 \\
312255 & 13546464 \\
89885444 & -43434213 \\
11998831 & -4190745 \\
\end{array}
\]

3-sum 3-collinear
Lower bound for 3-COLLINEAR

3-SUM. Given N distinct integers, are there three that sum to 0?

3-COLLINEAR. Given N distinct points in the plane, are there 3 (or more) that lie on the same line?

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

Pf. [next two slides]

Conjecture. No sub-quadratic algorithm for 3-SUM.

Implication. No sub-quadratic algorithm for 3-COLLINEAR likely.

3-SUM linear-time reduces to 3-COLLINEAR

Proposition. 3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance: x_1, x_2, \ldots, x_N.
• 3-COLLINEAR instance: $(x_1, x_1^2), (x_2, x_2^2), \ldots, (x_N, x_N^2)$.

Lemma. If a, b, and c are distinct, then $a + b + c = 0$ if and only if $(a, a^3), (b, b^3)$, and (c, c^3) are collinear.

Pf. Three distinct points $(a, a^3), (b, b^3), (c, c^3)$ are collinear iff:

\[
\begin{bmatrix}
0 & a & a^3 & 1 \\
0 & b & b^3 & 1 \\
0 & c & c^3 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 \\
2 \cdot 1 - 0 \\
\end{bmatrix}
= \begin{bmatrix}
1 \\
1 \\
1 \\
\end{bmatrix}
\]

3-SUM linear-time reduces to 3-COLLINEAR

Reduction. 3-SUM linear-time reduces to 3-COLLINEAR.

• 3-SUM instance: x_1, x_2, \ldots, x_N.
• 3-COLLINEAR instance: $(x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_N, f(x_N))$.

We hope to prove: If a, b, and c are distinct, then $a + b + c = 0$ if and only if $(a, f(a)), (b, f(b)), \ldots, (c, f(c))$ are collinear.

Complexity of 3-SUM

Some recent (2014) evidence that the complexity might be $N^{3/2}$.

Threesomes, Degenerates, and Love Triangles*
Allan Grønlund MADALGO, Aarhus University Seth Pettie University of Michigan April 4, 2014

Abstract

The 3SUM problem is to decide, given a set of n real numbers, whether there are three that sum to zero. We prove that the decision tree complexity of 3SUM is $\Omega(n^{3/2})$, and that there is a randomized 3SUM algorithm running in $O(n^{3/2}) \log^{O(1)} n$ time, and a deterministic algorithm running in $(2^{\log ^{O(1)} n}) \log n$ time. These results settle the decision tree (and algorithmic) complexity of 3SUM conjecture, namely that its decision tree (and algorithmic) complexity is $\Omega(n^{\alpha})$.

*
Reductions: summary

Reduction: relationship between two problems.

How to apply:
- Reduction to solved problem: paradigm for designing algorithms.
- Reduction from solved problem: technique for proving lower bounds.
- Putting the two together: classify problems into complexity classes.
 - Especially useful for proving NP-completeness.

Reductions require ingenuity, but a few tricks recur.

Bird’s-eye view

Def. A problem is intractable if it can’t be solved in polynomial time.
Desiderata. Prove that a problem is intractable.

Two problems that provably require exponential time.
- Given a constant-size program, does it halt in at most K steps?
- Given N-by-N checkers board position, can the first player force a win?

input size = $c + \lg K$

Frustrating news. Very few successes.

A core problem: satisfiability

SAT. Given a system of boolean equations, find a solution.

Ex.

\[
\begin{array}{cccc}
\neg x_1 & \lor & x_2 & \lor & x_3 & = & \text{true} \\
\neg x_1 & \lor & \neg x_2 & \lor & x_3 & = & \text{true} \\
\neg x_1 & \lor & \neg x_2 & \lor & \neg x_3 & = & \text{true} \\
\neg x_1 & \lor & \neg x_2 & \lor & x_3 & \lor x_4 & = & \text{true} \\
\neg x_2 & \lor & x_3 & \lor x_4 & = & \text{true} \\
\end{array}
\]

instance I \hspace{1cm} solution S

3-SAT. All equations of this form (with three variables per equation).

Key applications.
- Automatic verification systems for software.
- Mean field diluted spin glass model in physics.
- Electronic design automation (EDA) for hardware.
- ...
Satisfiability is conjectured to be intractable

- **Q.** How to solve an instance of 3-SAT with N variables?
 - **A.** Exhaustive search: try all 2^N truth assignments.

- **Q.** Can we do anything substantially more clever?
 - **Conjecture (P \neq NP).** 3-SAT is intractable (no poly-time algorithm).

Polynomial-time reductions

- **Problem X poly-time (Cook) reduces to problem Y if X can be solved with:**
 - Polynomial number of standard computational steps.
 - Polynomial number of calls to Y.

Establish intractability. If 3-SAT poly-time reduces to Y, then Y is intractable. (assuming 3-SAT is intractable)

Reasoning.
- If I could solve Y in poly-time, then I could also solve 3-SAT in poly-time.
- 3-SAT is believed to be intractable.
- Therefore, so is Y.

Integer linear programming

- **ILP.** Given a system of linear inequalities, find an integral solution.

3-SAT poly-time reduces to ILP

- **3-SAT.** Given a system of boolean equations, find a solution.

- **ILP.** Given a system of linear inequalities, find a 0-1 solution.

Context. Cornerstone problem in operations research.

Remark. Finding a real-valued solution is tractable (linear programming).
Reductions: quiz 3

Suppose that Problem X poly-time reduces to Problem Y. Which of the following can you infer?

A. If X can be solved in poly-time, then so can Y.
B. If X cannot be solved in cubic time, Y cannot be solved in poly-time.
C. If Y can be solved in cubic time, then X can be solved in poly-time.
D. If Y cannot be solved in poly-time, then neither can X.
E. I don’t know.

Implications of poly-time reductions from 3-satisfiability

Establishing intractability through poly-time reduction is an important tool in guiding algorithm design efforts.

Q. How to convince yourself that a new problem is (probably) intractable?
A1. [hard way] Long futile search for an efficient algorithm (as for 3-Sat).
A2. [easy way] Reduction from 3-Sat.

Caveat. Intricate reductions are common.

Search problems

Search problem. Problem where you can check a solution in poly-time.

Ex 1. 3-Sat.

\[\neg x_1 \text{ or } x_2 \text{ or } x_3 = \text{true} \]
\[x_1 \text{ or } \neg x_2 \text{ or } x_3 = \text{true} \]
\[\neg x_1 \text{ or } \neg x_2 \text{ or } \neg x_3 = \text{true} \]
\[\neg x_1 \text{ or } \neg x_2 \text{ or } \neg x_3 = \text{true} \]

Ex 2. Factor. Given an N-bit integer \(x \), find a nontrivial factor.

\[
\begin{array}{cccc}
147573952589676412927 & 193707721 \\
T & T & F & T \\
\end{array}
\]

instance 1

solution 5
P vs. NP

P. Set of search problems solvable in poly-time.

Importance. What scientists and engineers can compute feasibly.

NP. Set of search problems (checkable in poly-time).

Importance. What scientists and engineers aspire to compute feasibly.

Fundamental question.

Consensus opinion. No.

Implications of Cook-Levin theorem

- **3-SAT** reduces to **3-COLOR**
- **3-COLOR** reduces to **3-SAT**
- **3-SAT** reduces to **IND-SET**
- **IND-SET** reduces to **VERTEX-COVER**
- **VERTEX-COVER** reduces to **HAM-CYCLE**
- **HAM-CYCLE** reduces to **HAM-PATH**
- **HAM-PATH** reduces to **SUBSET-SUM**
- **SUBSET-SUM** reduces to **PARTITION**
- **PARTITION** reduces to **KNAPSACK**
- **KNAPSACK** reduces to **BIN-PACKING**

All of these problems (and many, many more) poly-time reduce to 3-SAT.

Implications of Karp + Cook-Levin

All of these problems are NP-complete; they are manifestations of the same really hard problem.

Cook-Levin theorem

A problem is **NP-COMPLETE** if

- It is in NP.
- All problems in NP poly-time to reduce to it.

Cook-Levin theorem. 3-SAT is NP-COMPLETE.

Corollary. 3-SAT is tractable if and only if **P = NP**.
Suppose that X is NP-COMPLETE, Y is in NP, and X poly-time reduces to Y. Which of the following statements can you infer?

I. Y is NP-COMPLETE.
II. If Y cannot be solved in poly-time, then $P \neq NP$.
III. If $P = NP$, then neither X nor Y can be solved in poly-time.

A. I only.
B. II only.
C. I and II only.
D. I, II, and III.
E. I don’t know.

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

<table>
<thead>
<tr>
<th>complexity</th>
<th>order of growth</th>
<th>examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>N</td>
<td>min, max, median, Burrows-Wheeler transform, ...</td>
</tr>
<tr>
<td>linearithmic</td>
<td>$N \log N$</td>
<td>sorting, element distinctness, ...</td>
</tr>
<tr>
<td>quadratic</td>
<td>N^2</td>
<td>?</td>
</tr>
<tr>
<td>exponential</td>
<td>c^n</td>
<td>?</td>
</tr>
</tbody>
</table>

Frustrating news. Huge number of problems have defied classification.

Complexity zoo

Complexity class. Set of problems sharing some computational property.

https://complexityzoo.uwaterloo.ca

Good news. Can put many problems into equivalence classes.

Bad news. Lots of complexity classes (496 animals in zoo).
Summary

Reductions are important in theory to:
- Design algorithms.
- Establish lower bounds.
- Classify problems according to their computational requirements.

Reductions are important in practice to:
- Design algorithms.
- Design reusable software modules.
 - stacks, queues, priority queues, symbol tables, sets, graphs
 - sorting, regular expressions, suffix arrays
 - MST, shortest paths, maxflow, linear programming
- Determine difficulty of your problem and choose the right tool.