3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs
- B-trees
Symbol table review

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Ops?</th>
<th>Key Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log N$</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
</tr>
<tr>
<td>goal</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

Challenge. Guarantee performance.

This lecture. 2–3 trees, left-leaning red–black BSTs, B-trees.
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs
- B-trees
2–3 tree

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

Allow 1 or 2 keys per node.
- 2-node: one key, two children.
- 3-node: two keys, three children.
Search.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).

search for H
2–3 tree demo: insertion

Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.

insert K

K is less than M
(go left)
2–3 tree demo: insertion

Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.

insert K

K is greater than J (go right)
2–3 tree demo: insertion

Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.

insert K

search ends here
2–3 tree demo: insertion

Insert into a 2-node at bottom.
- Search for key, as usual.
- Replace 2-node with 3-node.

```
insert K
```

```
\[
\begin{array}{c}
  A \quad C \\
  E \quad J \\
  M
\end{array}
\]
```

```
\[
\begin{array}{c}
  H \quad K \quad L \\
  P \\
  S \quad X
\end{array}
\]
```

replace 2-node with 3-node containing K
2–3 tree demo: insertion

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

insert K
2–3 tree demo: insertion

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

`insert Z`
2–3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

Insert Z

\[
\begin{array}{c}
\text{A} \\
\text{E} \\
\text{M} \\
\text{Z} \\
\text{S} \\
\text{X} \\
\end{array}
\]

- Z is greater than R (go right)
2–3 tree demo: insertion

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

search ends here
2–3 tree demo: insertion

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z

replace 3-node with temporary 4-node containing Z
2–3 tree demo: insertion

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
2–3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

`insert Z`

[Diagram of a 2-3 tree with nodes labeled A, C, H, K, L, P, S, X, Z, and M, showing the process of insertion and split into two 2-nodes.]

split 4-node into two 2-nodes (pass middle key to parent)
2–3 tree demo: insertion

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.

insert Z
2–3 tree demo: insertion

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

convert 3-node into 4-node
2–3 tree demo: insertion

Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2–3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2–3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L
2–3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

insert L

E L R

split 4-node
(move L to parent)

A C
H
P
S X
2–3 tree demo: insertion

Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

height of tree increases by 1

insert L
Insert into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

2–3 tree demo: insertion

insert L
2–3 tree: insertion

Insertion into a 2-node at bottom.
- Add new key to 2-node to create a 3-node.

Insertion into a 3-node at bottom.
- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

Practice: draw the 2-3 tree construction for SEARCH
2–3 tree demo: construction

insert S
2–3 tree demo: construction
2–3 tree demo: construction

insert E

convert 2-node into 3-node
insert E
2–3 tree demo: construction

2–3 tree

Diagram: [Image of a 2–3 tree with nodes labeled E and S]
insert A

convert 3-node into 4-node
2–3 tree demo: construction

insert A
2–3 tree demo: construction

insert A

split 4-node
(move E to parent)
insert A
2–3 tree demo: construction

2–3 tree
2–3 tree demo: construction

insert R

convert 2-node into 3-node
2–3 tree demo: construction

insert R

```
  E
 /|
A  RS
```

2–3 tree demo: construction

2–3 tree

```
  E
  /|
  / |
A  R S
```
2–3 tree demo: construction

insert C

convert 2-node into 3-node
2–3 tree demo: construction

insert C
2–3 tree demo: construction

2–3 tree
2–3 tree demo: construction

insert H

convert 3-node into 4-node
2–3 tree demo: construction

insert H
2–3 tree demo: construction

insert H

split 4-node (move R to parent)
2–3 tree demo: construction

insert H
2–3 tree demo: construction

2–3 tree

\[\text{A C} \quad \text{E R} \quad \text{H} \quad \text{S}\]
2–3 tree demo: construction

insert X

convert 2-node into 3-node
2–3 tree demo: construction

insert X
2–3 tree demo: construction

2–3 tree
2–3 tree demo: construction

insert M

convert 2-node into 3-node
2–3 tree demo: construction

insert M
2–3 tree demo: construction

2–3 tree

```
2–3 tree

AC

ER

HM

SX
```
2–3 tree demo: construction

insert P

convert 3-node into 4-node
2–3 tree demo: construction

insert P
2–3 tree demo: construction

insert P

split 4-node
(move L to parent)
2–3 tree demo: construction

insert P
insert P

split 4-node
(move M to parent)
2–3 tree demo: construction

insert P

```
 M
 / \ / \ / \ / \ / \\
 E   R A C H P S X
```

2–3 tree demo: construction

2–3 tree

Diagram:

```
  M
 / \
E   R
 / \
A C  H  P  S X
```
insert L

convert 2-node into 3-node
2–3 tree demo: construction

insert L

convert 2-node into 3-node
2–3 tree demo: construction

2–3 tree

```
2 3 tree
```

```
M
  E
  |  R
A C  H L  P  S X
```
2–3 tree: global properties

Invariants. Maintains symmetric order and perfect balance.
Pf. Each transformation maintains symmetric order and perfect balance.

Homework: verify this
Splitting a 4-node is a local transformation: constant number of operations.
Balanced search trees: quiz 1

What is the height of a 2–3 tree with N keys in the worst case?

A. $\sim \log_3 N$
B. $\sim \log_2 N$
C. $\sim 2 \log_2 N$
D. $\sim N$
E. *I don't know.*
2–3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
- Worst case: $\lg N$ [all 2-nodes]
- Best case: $\log_3 N \approx 0.631 \lg N$ [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Bottom line. Guaranteed logarithmic performance for search and insert.
ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>ordered ops?</th>
<th>key interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>(unordered list)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search</td>
<td>(\log N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(\log N)</td>
</tr>
<tr>
<td>(ordered array)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BST</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(\log N)</td>
</tr>
<tr>
<td>2–3 tree</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(\log N)</td>
<td>(\log N)</td>
</tr>
</tbody>
</table>

but hidden constant is large (depends upon implementation)
2–3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

“Beautiful algorithms are not always the most useful.”

— Donald Knuth

Bottom line. Could do it, but there's a better way.
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs
- B-trees

Left-leaning version optimized for teaching and coding; developed by Bob Sedgewick in creating this course!
How to implement 2–3 trees with binary trees?

Challenge. How to represent a 3 node?

Approach 1. Regular BST.
- No way to tell a 3-node from a 2-node.
- Cannot map from BST back to 2–3 tree.

Approach 2. Regular BST with red "glue" nodes.
- Wastes space, wasted link.
- Code probably messy.

Approach 3. Regular BST with red "glue" links.
- Widely used in practice.
- Arbitrary restriction: red links lean left.
Left-leaning red–black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.
Left-leaning red–black BSTs: 1–1 correspondence with 2–3 trees

Key property. 1–1 correspondence between 2–3 and LLRB.
Definition of left-leaning red-black tree

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- Red links lean left.

"perfect black balance"
Search implementation for red–black BSTs

Observation. Search is the same as for elementary BST (ignore color).

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Remark. Most other ops (e.g., floor, iteration, selection) are also identical.
Red–black BST representation

Q. How to represent color of links in Java data structure?

Each node is pointed to by precisely one link (from its parent) ⇒ can encode color of links in nodes.

```java
private static final boolean RED = true;
private static final boolean BLACK = false;

private class Node
{
    Key key;
    Value val;
    Node left, right;
    boolean color; // color of parent link
}

private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}
```

null links are black
Elementary red–black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.

```
private Node rotateLeft(Node h) {
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

![Diagram of right rotation](image)

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Color flip. Recolor to split a (temporary) 4-node.

Invariants. Maintains symmetric order and perfect black balance.
Elementary red–black BST operations

Color flip. Recolor to split a (temporary) 4-node.

```
private void flipColors(Node h) {
    assert !isRed(h);
    assert isRed(h.left);
    assert isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.
Warmup 1. Insert into a tree with exactly 1 node.
Insertion into a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.

- **larger** search ends at this null link attached new node with red link colors flipped to black
- **smaller** search ends at this null link attached new node with red link rotated right colors flipped to black
- **between** search ends at this null link attached new node with red link rotated left
 rotated right colors flipped to black
General case.

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: *rotate left.*
 - Two left red links in a row: *rotate right.*
 - Both children red: *flip colors.*
Insertion into a LLRB tree: passing red links up the tree

General case.

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left red links in a row: rotate right.
 - Both children red: flip colors.

To maintain symmetric order and perfect black balance

To fix color invariants
Red–black BST construction practice: SEARCH

insert S

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

insert S

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two leftreds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

insert E

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- insert A

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

1. Insert A
2. Two left reds in a row (rotate S right)

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
red-black BST

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: **rotate left**.
 - Two left reds in a row: **rotate right**.
 - Both children red: **flip colors**.

insert R
red-black BST

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
red–black BST

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

insert C

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
red–black BST

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

insert H

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
red-black BST

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

insert X

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Do standard BST insert; color new link red.

Repeat until needed:
- (Only) right link red: rotate left.
- Two left reds in a row: rotate right.
- Both children red: flip colors.
Red-black BST construction demo

red–black BST

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

Red-black BST

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Red-black BST construction demo

- Do standard BST insert; color new link red.
- Repeat until needed:
 - (Only) right link red: rotate left.
 - Two left reds in a row: rotate right.
 - Both children red: flip colors.
Insertion into a LLRB tree: Java implementation

Same code for all cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.

```java
private Node put(Node h, Key key, Value val) {
    if (h == null) return new Node(key, val, RED);
    int cmp = key.compareTo(h.key);
    if (cmp < 0) h.left = put(h.left, key, val);
    else if (cmp > 0) h.right = put(h.right, key, val);
    else if (cmp == 0) h.val = val;

    if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
    if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
    if (isRed(h.left) && isRed(h.right)) flipColors(h);

    return h;
}
```

Only a few extra lines of code provides near-perfect balance.
Insertion into a LLRB tree: visualization

N = 255
max = 8
avg = 7.0
opt = 7.0

255 insertions in ascending order
Insertion into a LLRB tree: visualization

N = 255
max = 8
avg = 7.0
opt = 7.0

255 insertions in descending order
Insertion into a LLRB tree: visualization

N = 255
max = 10
avg = 7.3
opt = 7.0

255 random insertions
Balanced search trees: quiz 2

What is the height of a LLRB tree with \(N \) keys in the worst case?

A. \(\sim \log_3 N \)
B. \(\sim \log_2 N \)
C. \(\sim 2 \log_2 N \)
D. \(\sim N \)
E. I don't know.
Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \lg N$ in the worst case.

Pf.

- Black height = height of corresponding 2–3 tree $\leq \lg N$.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.0 \lg N$ in typical applications.
ST implementations: summary

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Guarantee</th>
<th>Average Case</th>
<th>Ordered Ops?</th>
<th>Key Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>delete</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log N$</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
</tr>
<tr>
<td>BST</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>$\log N$</td>
</tr>
<tr>
<td>2–3 tree</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
<tr>
<td>red–black BST</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

hidden constant c is small
(at most $2 \log N$ compares)
War story: why red-black?

Xerox PARC innovations. [1970s]
- Alto.
- GUI.
- Ethernet.
- Smalltalk.
- InterPress.
- Laser printing.
- Bitmapped display.
- WYSIWYG text editor.
- ...

A Dichromatic Framework For Balanced Trees

Leo J. Guibas
Xerox Palo Alto Research Center,
Palo Alto, California, and
Carnegie-Mellon University

Robert Sedgewick*
Program in Computer Science
Brown University
Providence, R. I.

*In this paper we present a uniform framework for the implementation and study of balanced tree algorithms. We show how to imbed in this framework a variety of balanced trees, including B-trees, splay trees, and red-black trees. We shall examine a number of variations on a common theme and exhibit full implementations which are notable for their brevity. One implementation is examined carefully, and some properties about its
War story: red–black BSTs

Telephone company contracted with database provider to build real-time database to store customer information.

Database implementation.
- Red–Black BST.
- Exceeding height limit of 80 triggered error-recovery process.

Extended telephone service outage.
- Main cause = height bound exceeded!
- Telephone company sues database provider.
- Legal testimony:

“If implemented properly, the height of a red–black BST with N keys is at most 2 lg N.” — expert witness
3.3 Balanced Search Trees

- 2–3 search trees
- red–black BSTs
- B-trees

A type of Balanced tree (co-)invented by Rudolf Bayer while working at Boeing
File system model

Page. Contiguous block of data (e.g., a 4,096-byte chunk).
Probe. First access to a page (e.g., from disk to memory).

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.
B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2–3 trees by allowing up to M keys per node.

- At least $\lfloor M/2 \rfloor$ keys in all nodes (except root).
- Every path from root to leaf has same number of links.

Choose M as large as possible so that M keys fit in a page.
(M = 1,024 is typical)

A B-tree ($M = 6$)
Search in a B-tree

- Start at root.
- Check if node contains key.
- Otherwise, find interval for search key and take corresponding link.

could use binary search
(but all ops are considered free)

a B-tree (M = 6)
Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with $M + 1$ keys on the way back up the B-tree (moving middle key to parent).
Balance in B-tree

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\sim \log M N$ and $\sim \log \frac{M}{2} N$ probes.

Pf. All nodes (except possibly root) have between $\left\lfloor \frac{M}{2} \right\rfloor$ and M keys.

In practice. Number of probes is at most 4. \rightarrow $M = 1024; N = 62$ billion $\log \frac{M}{2} N \leq 4$
Balanced search trees: quiz 3

What of the following does the B in B-tree not mean?

A. Bayer
B. Balanced
C. Binary
D. Boeing
E. I don't know.

“the more you think about what the B in B-trees could mean, the more you learn about B-trees and that is good.”

– Rudolph Bayer
Balanced trees in the wild

Red–Black trees are widely used as system symbol tables.

- **Java**: java.util.TreeMap, java.util.TreeSet.
- **C++ STL**: map, multimap, multiset.
- **Linux kernel**: completely fair scheduler, linux/rbtree.h.
- **Emacs**: conservative stack scanning.

B-tree cousins. B+ tree, B*tree, B# tree, ...

B-trees (and cousins) are widely used for file systems and databases.

- **Windows**: NTFS.
- **Mac**: HFS, HFS+.
- **Linux**: ReiserFS, XFS, Ext3FS, JFS, BTRFS.
- **Databases**: ORACLE, DB2, INGRES, SQL, PostgreSQL.