3.1 SYMBOL TABLES

- API
- elementary implementations
- ordered operations

"Smart data structures and dumb code works a lot better than the other way around." — Eric S. Raymond

Symbol tables

Key-value pair abstraction.
- Insert a value with specified key.
- Given a key, search for the corresponding value.

Ex. DNS lookup.
- Insert domain name with specified IP address.
- Given domain name, find corresponding IP address.

<table>
<thead>
<tr>
<th>domain name</th>
<th>IP address</th>
</tr>
</thead>
<tbody>
<tr>
<td>www.cs.princeton.edu</td>
<td>128.112.136.11</td>
</tr>
<tr>
<td>www.princeton.edu</td>
<td>128.112.128.15</td>
</tr>
<tr>
<td>www.yale.edu</td>
<td>130.132.143.21</td>
</tr>
<tr>
<td>www.harvard.edu</td>
<td>128.103.060.55</td>
</tr>
<tr>
<td>www.simpsons.com</td>
<td>209.052.165.60</td>
</tr>
</tbody>
</table>
Symbol table applications

<table>
<thead>
<tr>
<th>application</th>
<th>purpose of search</th>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>dictionary</td>
<td>find definition</td>
<td>word</td>
<td>definition</td>
</tr>
<tr>
<td>book index</td>
<td>find relevant pages</td>
<td>term</td>
<td>list of page numbers</td>
</tr>
<tr>
<td>file share</td>
<td>find song to download</td>
<td>name of song</td>
<td>computer ID</td>
</tr>
<tr>
<td>financial account</td>
<td>process transactions</td>
<td>account number</td>
<td>transaction details</td>
</tr>
<tr>
<td>web search</td>
<td>find relevant web pages</td>
<td>keyword</td>
<td>list of page names</td>
</tr>
<tr>
<td>compiler</td>
<td>find properties of variables</td>
<td>variable name</td>
<td>type and value</td>
</tr>
<tr>
<td>routing table</td>
<td>route Internet packets</td>
<td>destination</td>
<td>best route</td>
</tr>
<tr>
<td>DNS</td>
<td>find IP address</td>
<td>domain name</td>
<td>IP address</td>
</tr>
<tr>
<td>reverse DNS</td>
<td>find domain name</td>
<td>IP address</td>
<td>domain name</td>
</tr>
<tr>
<td>genomics</td>
<td>find markers</td>
<td>DNA string</td>
<td>known positions</td>
</tr>
<tr>
<td>file system</td>
<td>find file on disk</td>
<td>filename</td>
<td>location on disk</td>
</tr>
</tbody>
</table>

Symbol tables: context

Also known as: maps, dictionaries, associative arrays.

Generalizes arrays. Keys need not be between 0 and N – 1.

Language support:
- External libraries: C, VisualBasic, Standard ML, bash, ...
- Built-in libraries: Java, C#, C++, Scala, ...
- Built-in to language: Awk, Perl, PHP, Tcl, JavaScript, Python, Ruby, Lua.

```
is_awesome = ("Python": True, "Java": False)
print is_awesome["Python"]
```

Legal Python code

Basic symbol table API

Associative array abstraction. Associate one value with each key.

```
public class ST<Key, Value> {
    private Map<Key, Value> st;

    ST() {
        create an empty symbol table
    }

    void put(Key key, Value val) {
        a[key] = val;
    }

    Value get(Key key) {
        value paired with key
        a[key]
    }

    boolean contains(Key key) {
        is there a value paired with key?
    }

    Iterable<Key> keys() {
        all the keys in the table
    }

    void delete(Key key) {
        remove key (and its value) from table
    }

    boolean isEmpty() {
        is the table empty?
    }

    int size() {
        number of key-value pairs in the table
    }
}
```

Conventions

- Values are not null.
- Method get() returns null if key not present.
- Method put() overwrites old value with new value.

Easy to implement contains().

```
public boolean contains(Key key) {
    return get(key) != null;
}
```


Keys and values

Value type. Any generic type.

Key type: several natural assumptions.
- Assume keys are Comparable, use compareTo().
- Assume keys are any generic type, use equals() to test equality.
- Assume keys are any generic type, use equals() to test equality; use hashCode() to scramble key (next Wednesday).

Best practices. Use immutable types for symbol table keys.
- Immutable in Java: Integer, Double, String, java.io.File, ...
- Mutable in Java: StringBuilder, java.net.URL, arrays, ...

Equality test

All Java classes inherit a method equals().

Java requirements. For any references x, y and z:
- Reflexive: x.equals(x) is true.
- Symmetric: x.equals(y) iff y.equals(x).
- Transitive: if x.equals(y) and y.equals(z), then x.equals(z).
- Non-null: x.equals(null) is false.

Default implementation. (x == y)

Customized implementations. Integer, Double, String, java.io.File, ...

User-defined implementations. Some care needed.

Implementing equals for user-defined types

Seems easy.

```java
public final class Date implements Comparable<Date> {
    private final int month;
    private final int day;
    private final int year;
    ...
    public boolean equals(Date that) {
        if (this.day != that.day) return false;
        if (this.month != that.month) return false;
        if (this.year != that.year) return false;
        return true;
    }
}
```

Implementing equals for user-defined types

Seems easy, but requires some care.

```java
public final class Date implements Comparable<Date> {
    private final int month;
    private final int day;
    private final int year;
    ...
    public boolean equals(Object y) {
        if (y == this) return true;
        if (y == null) return false;
        if (y.getClass() != this.getClass()) return false;
        Date that = (Date) y;
        if (this.day != that.day) return false;
        if (this.month != that.month) return false;
        if (this.year != that.year) return false;
        return true;
    }
}
```
Equals design

“Standard” recipe for user-defined types.
- Optimization for reference equality.
- Check against `null`.
- Check that two objects are of the same type; cast.
- Compare each significant field:
 - if field is a primitive type, use `==`
 - if field is an object, use `equals()`
 - if field is an array, apply to each entry

Useful for assignment

Best practices.
- No need to use calculated fields that depend on other fields.
- Compare fields mostly likely to differ first.
- Make `compareTo()` consistent with `equals()`.

x.equals(y) if and only if (x.compareTo(y) == 0)

Frequency counter implementation

```java
public class FrequencyCounter {
    public static void main(String[] args) {
        String word, key;
        while (!StdIn.isEmpty()) {
            word = StdIn.readString();
            if (st.contains(word)) st.put(word, 1);
            else st.put(word, st.get(word) + 1);
        }
        String max = "";
        st.put(max, 0);
        for (String word : st.keys())
            if (st.get(word) > st.get(max))
                max = word;
        StdOut.println(max + " "+ st.get(max));
    }
}
```

3.1 Symbol Tables

Data structure. Maintain parallel arrays for keys and values, sorted by keys.

Search. Use binary search to find key.

Proposition. At most \(-\log_2 N\) compares to search a sorted array of length \(N\).

<table>
<thead>
<tr>
<th>keys[]</th>
<th>vals[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 2 3 4 5 6 7 8 9</td>
<td>0 1 2 3 4 5 6 7 8 9</td>
</tr>
<tr>
<td>A C E H L M P R S X</td>
<td>8 4 2 5 11 9 5 3 0 7</td>
</tr>
</tbody>
</table>
Binary search in an ordered array

Data structure. Maintain parallel arrays for keys and values, sorted by keys.

Search. Use binary search to find key.

```java
public Value get(Key key) {
    int lo = 0, hi = N-1;
    while (lo <= hi) {
        int mid = lo + (hi - lo) / 2;
        int cmp = key.compareTo(keys[mid]);
        if (cmp < 0) hi = mid - 1;
        else if (cmp > 0) lo = mid + 1;
        else if (cmp == 0) return vals[mid];
    }
    return null; // no matching key
}
```

Elementary symbol tables: quiz 1

Implementing binary search was

A. Easier than I thought.
B. About what I expected.
C. Harder than I thought.
D. Much harder than I thought.
E. I don’t know.

Binary search: insert

Data structure. Maintain an ordered array of key-value pairs.

Insert. Use binary search to find place to insert; shift all larger keys over.

Proposition. Takes linear time in the worst case.

```java
put("P", 10)
```

Elementary ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>unordered array or list</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>$\log N$</td>
<td>N</td>
<td>$\log N$</td>
</tr>
</tbody>
</table>

Challenge. Efficient implementations of both search and insert.
3.1 Symbol Tables

API
• elementary implementations
• ordered operations

Ordered symbol table API

```
public class ST<Key extends Comparable<Key>, Value> {
    Key min() { return smallest key; }
    Key max() { return largest key; }
    Key floor(Key key) { return largest key less than or equal to key; }
    Key ceiling(Key key) { return smallest key greater than or equal to key; }
    int rank(Key key) { return number of keys less than key; }
    Key select(int k) { return key of rank k; }
}
```

Examples of ordered symbol table API

```
<table>
<thead>
<tr>
<th>keys</th>
<th>values</th>
</tr>
</thead>
<tbody>
<tr>
<td>min()</td>
<td>09:00:00 Chicago</td>
</tr>
<tr>
<td>09:00:03 Phoenix</td>
<td></td>
</tr>
<tr>
<td>09:00:13 Houston</td>
<td></td>
</tr>
<tr>
<td>get(09:00:13)</td>
<td>09:00:59 Chicago</td>
</tr>
<tr>
<td>09:01:10 Houston</td>
<td></td>
</tr>
<tr>
<td>floor(09:05:00)</td>
<td>09:03:13 Chicago</td>
</tr>
<tr>
<td>09:10:11 Seattle</td>
<td></td>
</tr>
<tr>
<td>select(7)</td>
<td>09:10:25 Seattle</td>
</tr>
<tr>
<td>09:14:25 Phoenix</td>
<td></td>
</tr>
<tr>
<td>09:19:32 Chicago</td>
<td></td>
</tr>
<tr>
<td>09:19:46 Chicago</td>
<td></td>
</tr>
<tr>
<td>keys(09:15:00, 09:25:00)</td>
<td>09:21:05 Chicago</td>
</tr>
<tr>
<td>09:22:43 Seattle</td>
<td></td>
</tr>
<tr>
<td>09:22:54 Seattle</td>
<td></td>
</tr>
<tr>
<td>09:25:52 Chicago</td>
<td></td>
</tr>
<tr>
<td>ceiling(09:30:00)</td>
<td>09:35:21 Chicago</td>
</tr>
<tr>
<td>09:36:14 Seattle</td>
<td></td>
</tr>
<tr>
<td>max()</td>
<td>09:37:44 Phoenix</td>
</tr>
<tr>
<td>size(09:15:00, 09:25:00)</td>
<td>is 5</td>
</tr>
<tr>
<td>rank(09:10:25)</td>
<td>is 7</td>
</tr>
</tbody>
</table>
```

Rank in a sorted array

Problem. Given a sorted array of \(N \) distinct keys, find the number of keys strictly less than a given query key.

```
public Value get(Key key) public int rank(Key key) {
    int lo = 0, hi = N-1;
    while (lo < hi) {
        int mid = lo + (hi - lo) / 2;
        int cmp = key.compareTo(keys[mid]);
        if (cmp < 0) hi = mid - 1;
        else if (cmp > 0) lo = mid + 1;
        else if (cmp == 0) return vals[mid]; mid
    }
    return null; lo
}
```
3.2 Binary Search Trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:
- Empty.
- Two disjoint binary trees (left and right).

Search tree. Each node has a key, and every node’s key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

Binary search tree = Binary (search tree) = a search tree that's binary
also (Binary search) tree = a tree that supports binary search

Q. What are the differences between a heap and a binary search tree?
BST representation in Java

Java definition. A BST is a reference to a root node.

A node is composed of four fields:
- A key and a value.
- A reference to the left and right subtree.

```
private class Node {
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val) {
        this.key = key;
        this.val = val;
    }
}
```

Key and Value are generic types; Key is Comparable.

BST implementation (skeleton)

```
public class BST<Key extends Comparable<Key>, Value> {
    private Node root;

    private class Node {
        // ... (implementation details)
    }

    public void put(Key key, Value val) {
        // ... (implementation details)
    }

    public Value get(Key key) {
        // ... (implementation details)
    }

    public void delete(Key key) {
        // ... (implementation details)
    }

    public Iterable<Key> iterator() {
        // ... (implementation details)
    }
}
```

BST Search

Search (get).
Repeat:
- if less, _____
- if greater, _____
- if equal, _____
- if _____, search miss

```
only keys are shown
```

BST Search

Search (get).
Repeat:
- if less, go left;
- if greater, go right;
- if equal, return value (search hit)
- if null, return null (search miss)

```
only keys are shown
```
BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares = 1 + depth of node.

BST put: non-recursive implementation

Repeat:
- if less, ___
- if greater, ___
- if equal, ___
- if null, ___

Put. Associate value with key.

```java
public void put(Key key, Value val) {
    root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;
    return x;
}
```

Warning: concise but tricky code; read carefully!

Cost. Number of compares = 1 + depth of node.
BST practice

Q. Draw the tree when the following keys are inserted: A, L, O, E, P, I, G, S

Q. Draw the tree when the following keys are inserted: A, E, G, I, L, O, P, S

Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert = 1 + depth of node.

Bottom line. Tree shape depends on order of insertion.

BST insertion: random order visualization

Ex. Insert keys in random order. \(\sim 2 \ln N \).

ST implementations: summary

<table>
<thead>
<tr>
<th>implementation</th>
<th>guarantee</th>
<th>average case</th>
<th>operations on keys</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>search</td>
<td>insert</td>
<td>search hit</td>
</tr>
<tr>
<td>sequential search (unordered list)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>binary search (ordered array)</td>
<td>(\log N)</td>
<td>(N)</td>
<td>(\log N)</td>
</tr>
<tr>
<td>BST</td>
<td>(N)</td>
<td>(N)</td>
<td>(\log N)</td>
</tr>
</tbody>
</table>

Why not shuffle to ensure a (probabilistic) guarantee of \(\log N \)?
3.2 Binary Search Trees

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

```java
public Iterable<Key> keys() {
    Queue<Key> q = new Queue<Key>();
    inorder(root, q);
    return q;
}
private void inorder(Node x, Queue<Key> q) {
    if (x == null) return;
    inorder(x.left, q);
    q.enqueue(x.key);
    inorder(x.right, q);
}
```

Property. Inorder traversal of a BST yields keys in ascending order.

Binary search trees: inorder traversal

In what order does the `traverse(root)` code print out the keys in the BST?

- A. A C E H M R S X
- B. A C E R H M X S
- C. S E A C R H M X
- D. C A M H R E X S
- E. None of the above.

```java
private void traverse(Node x) {
    if (x == null) return;
    traverse(x.left);
    StdOut.println(x.key);
    traverse(x.right);
}
```

Binary search trees: quiz 1

Given N distinct keys, what is the name of this sorting algorithm?

1. Shuffle the keys.
2. Insert the keys into a BST, one at a time.
3. Do an inorder traversal of the BST.

- A. Insertion sort.
- B. Mergesort.
- C. Quicksort.
- D. None of the above.
- E. I don’t know.
Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1–1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If N distinct keys are inserted into a BST in *random* order, the expected number of compares for a search/insert is $\sim 2 \ln N$.

Pf. 1–1 correspondence with quicksort partitioning.

But... Worst-case height is $N - 1$.

[when client provides keys, they may *not* be in random order, and we have no control over probability of worst case]

Binary search trees: preorder traversal

In what order does the `traverse(root)` code print out the keys in the BST?

```java
private void traverse(Node x) {
  if (x == null) return;
  StdOut.println(x.key);
  traverse(x.left);
  traverse(x.right);
}
```

A. A C E H M R S X
B. A C E R H M X S
C. S E A C R H M X
D. C A M H R E S X
E. None of the above.

Binary search trees: postorder traversal

In what order does the `traverse(root)` code print out the keys in the BST?

```java
private void traverse(Node x) {
  if (x == null) return;
  traverse(x.left);
  traverse(x.right);
  StdOut.println(x.key);
}
```

A. A C E H M R S X
B. A C E R H M X S
C. S E A C R H M X
D. C A M H R E S X
E. None of the above.
Level-order traversal of a binary tree

Required order:
- Process root.
- Process children of root, from left to right.
- Process grandchildren of root, from left to right.
- ...

```java
queue.enqueue(root);
while (!queue.isEmpty()) {
    Node x = queue.dequeue();
    if (x == null) continue;
    StdOut.println(x.item);
    queue.enqueue(x.left);
    queue.enqueue(x.right);
}
```

Minimum and maximum

Minimum. Smallest key in BST.
Maximum. Largest key in BST.

Q. How to find the min / max?

3.2 Binary Search Trees

Floor. Largest key in BST ≤ query key.
Ceiling. Smallest key in BST ≥ query key.

Q. How to find the floor / ceiling?
Computing the floor

Floor. Largest key in BST ≤ k?

Case 1. [key in node x = k]
The floor of k is k.

Case 2. [key in node x > k]
The floor of k is the left subtree of x.

Case 3. [key in node x < k]
The floor of k can't be in left subtree of x: it is either in the right subtree of x or it is the key in node x.

Rank and select

Q. How to implement rank() and select() efficiently for BSTs?

A. In each node, store the number of nodes in its subtree.

BST implementation: subtree counts

```java
private class Node {
    private Key key;
    private Value val;
    private Node left;
    private Node right;
    private int count;
}
```

```java
private int size(Node x) {
    if (x == null) return 0;
    return x.count;
}
```

```java
private Node put(Node x, Key key, Value val) {
    if (x == null) return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if (cmp < 0) x.left = put(x.left, key, val);
    else if (cmp > 0) x.right = put(x.right, key, val);
    else if (cmp == 0) x.val = val;
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```

```java
public int size() {
    return size(root);
}
```

Finding floor(S)

```java
public Key floor(Key key) {
    return floor(root, key);
}
```

```java
int cmp = key.compareTo(x.key);
if (cmp == 0) return x;
if (cmp < 0) return floor(x.left, key);
return floor(x.right, key);
```
Computing the rank

Rank. How many keys in BST < \(k \)?

Case 1. \(k < \text{ key in node } \)
- Keys in left subtree? \(\text{count} \)
- Key in node? \(0 \)
- Keys in right subtree? \(0 \)

Case 2. \(k > \text{ key in node } \)
- Keys in left subtree? \(\text{all} \)
- Key in node. \(1 \)
- Keys in right subtree? \(\text{count} \)

Case 3. \(k = \text{ key in node } \)
- Keys in left subtree? \(\text{count} \)
- Key in node. \(0 \)
- Keys in right subtree? \(0 \)

BST: ordered symbol table operations summary

<table>
<thead>
<tr>
<th></th>
<th>sequential search</th>
<th>binary search</th>
<th>BST</th>
</tr>
</thead>
<tbody>
<tr>
<td>search</td>
<td>(N)</td>
<td>(\log N)</td>
<td>(h)</td>
</tr>
<tr>
<td>insert</td>
<td>(N)</td>
<td>(N)</td>
<td>(h)</td>
</tr>
<tr>
<td>min / max</td>
<td>(N)</td>
<td>(1)</td>
<td>(h)</td>
</tr>
<tr>
<td>floor / ceiling</td>
<td>(N)</td>
<td>(\log N)</td>
<td>(h)</td>
</tr>
<tr>
<td>rank</td>
<td>(N)</td>
<td>(\log N)</td>
<td>(h)</td>
</tr>
<tr>
<td>select</td>
<td>(N)</td>
<td>(1)</td>
<td>(h)</td>
</tr>
<tr>
<td>ordered iteration</td>
<td>(N \log N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
</tbody>
</table>

\(h \) = height of BST (proportional to \(\log N \) if keys inserted in random order)

Next lecture. Guarantee logarithmic performance for all operations.