4.2 DIRECTED GRAPHS

- introduction
- digraph API
- digraph search
- topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex = intersection; edge = one-way street.
Political blogosphere graph

Vertex = political blog; edge = link.

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

Uber taxi graph

Vertex = taxi pickup; edge = taxi ride.

Combinational circuit

Vertex = logical gate; edge = wire.
WordNet graph

Vertex = synset; edge = hypernym relationship.

http://wordnet.princeton.edu

Digraph applications

<table>
<thead>
<tr>
<th>digraph</th>
<th>vertex</th>
<th>directed edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>transportation</td>
<td>street intersection</td>
<td>one-way street</td>
</tr>
<tr>
<td>web</td>
<td>web page</td>
<td>hyperlink</td>
</tr>
<tr>
<td>food web</td>
<td>species</td>
<td>predator-prey relation</td>
</tr>
<tr>
<td>WordNet</td>
<td>synset</td>
<td>hypernym</td>
</tr>
<tr>
<td>scheduling</td>
<td>task</td>
<td>precedence constraint</td>
</tr>
<tr>
<td>financial</td>
<td>bank</td>
<td>transaction</td>
</tr>
<tr>
<td>cell phone</td>
<td>person</td>
<td>placed call</td>
</tr>
<tr>
<td>infectious disease</td>
<td>person</td>
<td>infection</td>
</tr>
<tr>
<td>game</td>
<td>board position</td>
<td>legal move</td>
</tr>
<tr>
<td>citation</td>
<td>journal article</td>
<td>citation</td>
</tr>
<tr>
<td>object graph</td>
<td>object</td>
<td>pointer</td>
</tr>
<tr>
<td>inheritance hierarchy</td>
<td>class</td>
<td>inherits from</td>
</tr>
<tr>
<td>control flow</td>
<td>code block</td>
<td>jump</td>
</tr>
</tbody>
</table>

Some digraph problems

<table>
<thead>
<tr>
<th>problem</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s→t path</td>
<td>Is there a path from s to t ?</td>
</tr>
<tr>
<td>shortest s→t path</td>
<td>What is the shortest path from s to t ?</td>
</tr>
<tr>
<td>directed cycle</td>
<td>Is there a directed cycle in the graph ?</td>
</tr>
<tr>
<td>topological sort</td>
<td>Can the digraph be drawn so that all edges point upwards?</td>
</tr>
<tr>
<td>strong connectivity</td>
<td>Is there a directed path between all pairs of vertices ?</td>
</tr>
<tr>
<td>transitive closure</td>
<td>For which vertices v and w is there a directed path from v to w ?</td>
</tr>
<tr>
<td>PageRank</td>
<td>What is the importance of a web page ?</td>
</tr>
</tbody>
</table>
Digraph API

Almost identical to Graph API.

```java
public class Digraph
    
    Digraph(int V) create an empty digraph with V vertices
    Digraph(In in) create a digraph from input stream
    void addEdge(int v, int w) add a directed edge v→w
    Iterable<Integer> adj(int v) vertices adjacent from v
    int V() number of vertices
    int E() number of edges
    Digraph reverse() reverse of this digraph
    String toString() string representation
```

Digraph representation: adjacency lists

Maintain vertex-indexed array of lists.

```
adj[]
0  1  2  3  4  5  6  7  8  9 10 11 12
0  1  2  3  4  5  6  7  8  9 10 11 12
5  2
3  2
0  3
5  1
```

Directed graphs: quiz 1

Which is order of growth of running time of the following code fragment if the digraph uses the adjacency-lists representation?

A. \(V \)
B. \(E + V \)
C. \(V^2 \)
D. \(V \cdot E \)
E. I don’t know.

```java
public class Digraph
    
    Digraph(int V) create an empty digraph with V vertices
    Digraph(In in) create a digraph from input stream
    void addEdge(int v, int w) add a directed edge v→w
    Iterable<Integer> adj(int v) vertices adjacent from v
    int V() number of vertices
    int E() number of edges
    Digraph reverse() reverse of this digraph
    String toString() string representation
```

Digraph representations

In practice. Use adjacency-lists representation.
- Algorithms based on iterating over vertices adjacent from \(v \).
- Real-world digraphs tend to be sparse.

```
<table>
<thead>
<tr>
<th>representation</th>
<th>space</th>
<th>insert edge from ( v ) to ( w )</th>
<th>edge from ( v ) to ( w )</th>
<th>iterate over vertices adjacent from ( v )</th>
</tr>
</thead>
<tbody>
<tr>
<td>list of edges</td>
<td>( E )</td>
<td>1</td>
<td>( E )</td>
<td>( E )</td>
</tr>
<tr>
<td>adjacency matrix</td>
<td>( V^2 )</td>
<td>( 1 )</td>
<td>( 1 )</td>
<td>( V )</td>
</tr>
<tr>
<td>adjacency lists</td>
<td>( E + V )</td>
<td>( 1 )</td>
<td>outdegree(( v ))</td>
<td>outdegree(( v ))</td>
</tr>
</tbody>
</table>
```

† disallows parallel edges
Adjacency-lists graph representation (review): Java implementation

```java
public class Graph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Graph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
        adj[w].add(v);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

Adjacency-lists digraph representation: Java implementation

```java
public class Digraph {
    private final int V;
    private final Bag<Integer>[] adj;

    public Digraph(int V) {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
    }

    public void addEdge(int v, int w) {
        adj[v].add(w);
    }

    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

Reachability

Problem. Find all vertices reachable from s along a directed path.

4.2 Directed Graphs

- introduction
- digraph API
- digraph search
- topological sort
- strong components
Depth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)
Mark vertex v.
Recursively visit all unmarked vertices w adjacent from v.

Depth-first search demo

To visit a vertex v:
- Mark vertex v as visited.
- Recursively visit all unmarked vertices adjacent from v.

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```java
public class DepthFirstSearch {
    private boolean[] marked;
    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }
    public boolean visited(int v) {
        return marked[v];
    }
}
```

Depth-first search demo

Depth-first search demo

![Directed graph](image)
Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [substitute Digraph for Graph]

```java
public class DirectedDFS {
    private boolean[] marked;
    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
    }
    public boolean visited(int v) {
        return marked[v];
    }
}
```

Reachability application: program control-flow analysis

Every program is a digraph.
- Vertex = basic block of instructions (straight-line program).
- Edge = jump.

Dead-code elimination.
Find (and remove) unreachable code.

Infinite-loop detection.
Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program (starting at a root and following a chain of pointers).

Mark-sweep algorithm. [McCarthy, 1960]
- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).
Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
- Reachability.
- Path finding.
- Topological sort.
- Directed cycle detection.

Basis for solving difficult digraph problems.
- 2-satisfiability.
- Directed Euler path.
- Strongly-connected components.

Breadth-first search in digraphs

Same method as for undirected graphs.
- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:
- remove the least recently added vertex v
- for each unmarked vertex adjacent from v: add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges) from s to all other vertices in a digraph in time proportional to $E + V$.

Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.

Directed breadth-first search demo

Repeat until queue is empty:
- Remove vertex v from queue.
- Add to queue all unmarked vertices adjacent from v and mark them.
Multiple-source shortest paths

Given a digraph and a set of source vertices, find shortest path from any vertex in the set to every other vertex.

Ex. $S = \{1, 7, 10\}$.
- Shortest path to 4 is 7→6→4.
- Shortest path to 5 is 7→6→0→5.
- Shortest path to 12 is 10→12.

Q. How to implement multi-source shortest paths algorithm?

Directed graphs: quiz 2

Suppose that you want to design a web crawler. Which graph search algorithm should you use?

A. Depth-first search
B. Breadth-first search
C. Either A or B
D. Neither A nor B
E. I don't know.

Web crawler output

Breadth-first search in digraphs application: web crawler

Solution. [BFS with implicit digraph]
- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).
Bare-bones web crawler: Java implementation

```java
Queue<String> queue = new Queue<String>();
SET<String> marked = new SET<String>();

String root = "http://www.princeton.edu";
queue.enqueue(root);
marked.add(root);

while (!queue.isEmpty())
{
    String v = queue.dequeue();
    StdOut.println(v);
    String input = in.readLine();
    String regexp = "http://(\w+\.\w+)(\w+)?";
    Pattern pattern = Pattern.compile(regexp);
    Matcher matcher = pattern.matcher(input);
    while (matcher.find())
    {
        String w = matcher.group();
        if (!marked.contains(w))
        {
            marked.add(w);
            queue.enqueue(w);
        }
    }
}
```

queue of websites to crawl
set of marked websites

start crawling from root website

read in raw html from next website in queue

use regular expression to find all URLs
in website of form http://xxx.yyy.zzz
[crude pattern misses relative URLs]

if unmarked, mark it and put on the queue

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

Solution. DFS. What else?
Topological sort demo

- Run depth-first search.
- Return vertices in reverse postorder.

![tinyDAG7.txt](image)

```java
public class DepthFirstOrder {
    private boolean[] marked;
    private Stack<Integer> reversePostorder;

    public DepthFirstOrder(Digraph G) {
        reversePostorder = new Stack<Integer>();
        marked = new boolean[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
        reversePostorder.push(v);
    }

    public Iterable<Integer> reversePostorder() {
        return reversePostorder;
    }
}
```

returns all vertices in “reverse DFS postorder”

Topological sort in a DAG: intuition

Why does topological sort algorithm work?
- First vertex in postorder has outdegree 0.
- Second-to-last vertex in postorder can only point to last vertex.
- ...
Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When $dfs(v)$ is called:

- **Case 1:** $dfs(w)$ has already been called and returned.
 - thus, w appears before v in postorder

- **Case 2:** $dfs(w)$ has not yet been called.
 - $dfs(w)$ will get called directly or indirectly by $dfs(v)$
 - so, $dfs(w)$ will finish before $dfs(v)$
 - thus, w appears before v in postorder

- **Case 3:** $dfs(w)$ has already been called, but has not yet returned.
 - function-call stack contains path from w to v
 - edge $v \rightarrow w$ would complete a cycle
 - contradiction (this case can't happen in a DAG)

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.

Pf.
- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

<table>
<thead>
<tr>
<th>DEPARTMENT</th>
<th>COURSE</th>
<th>DESCRIPTION</th>
<th>PREREQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER SCIENCE</td>
<td>CPSC 432</td>
<td>INTERMEDIATE COMPIlER DESIGN, WITH A FOCUS ON DEPENDENCY RESOlUTION.</td>
<td>CPSC 432</td>
</tr>
</tbody>
</table>

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
% javac A.java
A.java:1: cyclic inheritance involving A
  public class A extends B { }
  ^
1 error
```

```
public class B extends C {
  ...
}
```

```
public class C extends A {
  ...
}
```
Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar)

Directed cycle detection application: spreadsheet recalculation

Observation. DFS visits each vertex exactly once. The order in which it does so can be important.

Orderings.
- Preorder: order in which dfs() is called.
- Postorder: order in which dfs() returns.
- Reverse postorder: reverse order in which dfs() returns.

Strongly-connected components

Def. Vertices \(v\) and \(w\) are strongly connected if there is both a directed path from \(v\) to \(w\) and a directed path from \(w\) to \(v\).

Key property. Strong connectivity is an equivalence relation:
- \(v\) is strongly connected to \(v\).
- If \(v\) is strongly connected to \(w\), then \(w\) is strongly connected to \(v\).
- If \(v\) is strongly connected to \(w\) and \(w\) to \(x\), then \(v\) is strongly connected to \(x\).

Def. A strong component is a maximal subset of strongly-connected vertices.
Directed graphs: quiz 3

How many strong components are in a DAG with V vertices and E edges?

A. 0
B. 1
C. V
D. E
E. I don’t know.

![Graph diagram](image)

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.
- Vertex = software module.
- Edge: from module to dependency.

Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

3 connected components

v and w are strongly connected if there is both a directed path from v to w and a directed path from w to v

5 strongly-connected components

connected component id (easy to compute with DFS)

id[] = [0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2]

public boolean connected(int v, int w)
{
 return id[v] == id[w];
}

constant-time client connectivity query

strongly-connected component id (how to compute?)

id[] = [1, 0, 1, 1, 1, 3, 4, 3, 2, 2, 2]

public boolean stronglyConnected(int v, int w)
{
 return id[v] == id[w];
}

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

Strong component. Subset of species with common energy flow.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.
Approach 2. Use to improve design!
Strong components algorithms: brief history

1960s: Core OR problem.
- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).
- Classic algorithm.
- Level of difficulty: Algso++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju–Sharir).
- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
- Gabow: fixed old OR algorithm.
- Cheriyan–Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju-Sharir algorithm: intuition

Reverse graph. Strong components in \(G \) are same as in \(G^R \).

Kernel DAG. Contract each strong component into a single vertex.

Idea.
- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

Kosaraju-Sharir algorithm demo

Phase 1. Compute reverse postorder in \(G^R \).
Phase 2. Run DFS in \(G \), visiting unmarked vertices in reverse postorder of \(G^R \).
Kosaraju-Sharir algorithm demo

Phase 2. Run DFS in G, visiting unmarked vertices in reverse postorder of G^R.

1 0 2 4 5 3 11 9 12 10 6 7 8

Kosaraju-Sharir algorithm

Simple (but mysterious) algorithm for computing strong components.

- Phase 1: run DFS on G^R to compute reverse postorder.
- Phase 2: run DFS on G, considering vertices in order given by first DFS.

Proposition. Kosaraju-Sharir algorithm computes the strong components of a digraph in time proportional to $E + V$.

Pf.

- Running time: bottleneck is running DFS twice (and computing G^R).
- Correctness: tricky, see textbook (2nd printing).
- Implementation: easy!
Connected components in an undirected graph (with DFS)

```java
public class CC {
    private boolean marked[];
    private int[] id;
    private int count;

    public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        for (int v = 0; v < G.V(); v++)
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean connected(int v, int w) {
        return id[v] == id[w];
    }
}
```

Strong components in a digraph (with two DFSs)

```java
public class KosarajuSharirSCC {
    private boolean marked[];
    private int[] id;
    private int count;

    public KosarajuSharirSCC(Digraph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
        for (int v : dfs.reversePostorder())
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
    }

    private void dfs(Digraph G, int v) {
        marked[v] = true;
        id[v] = count;
        for (int w : G.adj(v))
            if (!marked[w])
                dfs(G, w);
    }

    public boolean stronglyConnected(int v, int w) {
        return id[v] == id[w];
    }
}
```

Digraph-processing summary: algorithms of the day

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>single-source</td>
<td>topological</td>
</tr>
<tr>
<td>reachability in a digraph</td>
<td>sort in a DAG</td>
</tr>
<tr>
<td>DFS</td>
<td>DFS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>strong components</td>
<td>Kosaraju-Sharir</td>
</tr>
<tr>
<td>in a digraph</td>
<td>DFS (twice)</td>
</tr>
</tbody>
</table>