2.3 Recursion
Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
• New mode of thinking.
• Powerful programming paradigm.

Many computations are naturally self-referential.
• Binary search, mergesort, FFT, GCD.
• Linked data structures.
• A folder contains files and other folders.

Closely related to mathematical induction.
Mathematical induction. Prove a statement involving an integer N by

• **base case:** Prove it for some specific N (usually 0 or 1).
• **induction step:** Assume it to be true for all positive integers less than N, use that fact to prove it for N.

Ex. Sum of the first N odd integers is N\(^2\).

Base case: True for N = 1.

Induction step:

• Let \(T(N) \) be the sum of the first N odd integers: \(1 + 3 + 5 + \ldots + (2N - 1) \).
• Assume that \(T(N-1) = (N-1)^2 \).
• \(T(N) = T(N-1) + (2N - 1) \)
 = \((N-1)^2 + (2N - 1)\)
 = \(N^2 - 2N + 1 + (2N - 1)\)
 = \(N^2\)
Recursive Program

Recursive Program. Implement a function having integer arguments by

• **base case:** Do something specific in response to “base” argument values.
• **reduction step:** Assume the function works for all smaller argument values, and use the function to implement itself for general argument values.

```java
public static String convert(int x) {
    if (x == 1) return "1";
    return convert(x/2) + (x % 2);
}
```

Ex 1. Convert positive int to binary String.
Base case: return “1” for x = 1.
Reduction step:
• convert x/2 to binary
• append “0” if x even
• append “1” if x odd

37 → 18
"100101" = "10010" + "1"
Recursive Program

Recursive Program. Implement a function having integer arguments by

- **base case**: Implementing it for some specific values of the arguments.
- **reduction step**: Assume the function works for smaller values of its arguments and use it to implement the function for the given values.

```java
public class Binary
{
    public static String convert(int x)
    {
        if (x == 1) return "1";
        return convert(x/2) + (x % 2);
    }

    public static void main(String[] args)
    {
        int x = Integer.parseInt(args[0]);
        System.out.println(convert(x));
    }
}
```

```bash
% java Binary 6
110
% java Binary 37
100101
% java Binary 999999
1111010001000111111
```
public class Binary
{
 public static String convert(int x)
 {
 if (x == 0) return "";
 return convert(x/2) + (x % 2);
 }

 public static void main(String[] args)
 {
 int x = Integer.parseInt(args[0]);
 System.out.println(convert(x));
 }
}
Recursion vs. Iteration

Every program with 1 recursive call corresponds to a loop.

```java
public static String convert(int x) {
    if (x == 1) return "1";
    return convert(x/2) + (x % 2);
}
```

Reasons to use recursion:

• code more compact
• easier to understand
• easier to reason about correctness
• easy to add multiple recursive calls (stay tuned)

```java
public static String convertNR(int x) {
    String s = "1";
    while (x > 1) {
        s = (x % 2) + s;
        x = x/2;
    }
    return s;
}
```

Reasons not to use recursion: (stay tuned)
Greatest Common Divisor

Gcd. Find largest integer that evenly divides into \(p \) and \(q \).

Ex. \(\text{gcd}(4032, 1272) = 24 \).

\[
\begin{align*}
4032 &= 2^6 \times 3^2 \times 7^1 \\
1272 &= 2^3 \times 3^1 \times 53^1 \\
\text{gcd} &= 2^3 \times 3^1 = 24
\end{align*}
\]

Applications.
- Simplify fractions: \(1272/4032 = 53/168 \).
- RSA cryptosystem.
Greatest Common Divisor

GCD. Find largest integer that evenly divides into \(p \) and \(q \).

Euclid's algorithm. [Euclid 300 BCE]

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 gcd(q, p \mod q) & \text{otherwise}
\end{cases}
\]

\[
gcd(4032, 1272) = gcd(1272, 216) \\
= gcd(216, 192) \\
= gcd(192, 24) \\
= gcd(24, 0) \\
= 24.
\]

4032 = 3 × 1272 + 216

\(\text{base case} \)

\(\text{reduction step, converges to base case} \)
Euclid’s Algorithm

GCD. Find largest integer d that evenly divides into p and q.

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 \gcd(q, p \mod q) & \text{otherwise}
\end{cases}
\]

- **base case**
- **reduction step,** converges to base case

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
p = 8x \\
q = 3x
\]

\[
gcd(p, q) = gcd(3x, 2x) = x
\]
Euclid’s Algorithm

GCD. Find largest integer d that evenly divides into p and q.

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 gcd(q, p \% q) & \text{otherwise}
\end{cases}
\]

Recursive program

```java
public static int gcd(int p, int q)
{
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```

← base case
← reduction step, converges to base case
public class Euclid
{
 public static int gcd(int p, int q)
 {
 if (q == 0) return p;
 else return gcd(q, p % q);
 }

 public static void main(String[] args)
 {
 int p = Integer.parseInt(args[0]);
 int q = Integer.parseInt(args[1]);
 System.out.println(gcd(p, q));
 }
}

% java Euclid 1272 216
24
Possible debugging challenges with recursion

Missing base case.

```java
public static double BAD(int N) {
    return BAD(N-1) + 1.0/N;
}
```

No convergence guarantee.

```java
public static double BAD(int N) {
    if (N == 1) return 1.0;
    return BAD(1 + N/2) + 1.0/N;
}
```

Both lead to INFINITE RECURSIVE LOOP (bad news).

Try it! so that you can recognize and deal with it if it later happens to you
Collatz Sequence

Collatz sequence.

• If n is 1, stop.
• If n is even, divide by 2.
• If n is odd, multiply by 3 and add 1.

Ex. 35 106 53 160 80 40 20 10 5 16 8 4 2 1.

```java
public static void collatz(int N) {
    StdOut.print(N + " ");
    if (N == 1) return;
    if (N % 2 == 0) collatz(N / 2);
    else collatz(3 * N + 1);
}
```

No one knows whether or not this function terminates for all N (!) [usually we decrease N for all recursive calls]
Recursive Graphics

New Yorker Magazine, August 11, 2008
Fruits of Design, Certified Organic

In a consortium of artists and designers, the Orange Caramel Collective, a diverse team of creators, has teamed up to create a unique art exhibit titled "Fruits of Design," which explores the intersection of art, design, and sustainability. The exhibit opens on February 15th and features works by participants who have been brought together to create a collective voice and push the boundaries of what it means to create art in the 21st century.

The Gifts to Open Again and Again

The latest addition to the popular "Gifts to Open Again and Again" series is "The Vale Book of Quotations," a beautifully illustrated compilation of some of the bestholding books.

Black, White and Read All Over Over

Brendan Goggin

For a year of 500 hours a year, "Black, White and Read All Over," a book club for people with ADHD, has been meeting weekly. This week, the group will be discussing "The Pale King," a novel by David Foster Wallace.

Divine and Devotee Meet Across Hinges

When a young Catholic artist named Berta de la Cruz met a Hindu guru in India in 2001, she was changed forever. The two have since traveled the world together, sharing their spiritual journeys and finding common ground in their shared belief in the power of art to heal and inspire.
H-tree of order n.

- Draw an H.
- Recursively draw 4 H-trees of order $n-1$, one connected to each tip.

and half the size

tip
public class Htree
{
 public static void draw(int n, double sz, double x, double y)
 {
 if (n == 0) return;
 double x0 = x - sz/2, x1 = x + sz/2;
 double y0 = y - sz/2, y1 = y + sz/2;
 StdDraw.line(x0, y, x1, y);
 StdDraw.line(x0, y0, x0, y1); // draw the H, centered on (x, y)
 StdDraw.line(x1, y0, x1, y1);
 draw(n-1, sz/2, x0, y0);
 draw(n-1, sz/2, x0, y1);
 draw(n-1, sz/2, x1, y0);
 draw(n-1, sz/2, x1, y1);
 }

 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 draw(n, .5, .5, .5);
 }
}
Animated H-tree. Pause after drawing each H.
Towers of Hanoi

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

start

finish

Edouard Lucas (1883)
Towers of Hanoi: Recursive Solution

Move n-1 smallest discs right.

Move largest disc left.

Move n-1 smallest discs right.
Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
 • 64 golden discs on 3 diamond pegs.
 • World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?
public class TowersOfHanoi
{
 public static void moves(int n, boolean left)
 {
 if (n == 0) return;
 moves(n-1, !left);
 if (left) System.out.println(n + " left");
 else System.out.println(n + " right");
 moves(n-1, !left);
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 moves(N, true);
 }
}

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right

smallest disc
Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left
% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right

Every other move is smallest disc

Subdivisions of ruler
Remarkable properties of recursive solution.

- Takes $2^n - 1$ moves to solve n disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!

- Alternate between two moves:
 - move smallest disc to right if n is even
 - make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

- Takes 585 billion years for $n = 64$ (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long!
Divide-and-Conquer

Divide-and-conquer paradigm.

- Break up problem into smaller subproblems of same structure.
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.

- Midpoint displacement method for fractional Brownian motion.
- FFT for signal processing.
- Parsers for programming languages.
- Multigrid methods for solving PDEs.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N-body simulation.

Divide et impera. Veni, vidi, vici. - Julius Caesar
Fibonacci Numbers
Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases} \]

Fibonacci rabbits

L. P. Fibonacci
(1170 - 1250)
Fibonacci Numbers

pinecone

cauliflower

see much, much more at www.youtube.com/user/Vihart
A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

A natural for recursion?

\[
F_n = \begin{cases}
 0 & \text{if } n = 0 \\
 1 & \text{if } n = 1 \\
 F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]

FYI (classical math):

\[
F(n) = \frac{\phi^n - (1 - \phi)^n}{\sqrt{5}} = \left[\frac{\phi^n}{\sqrt{5}} \right]
\]

\(\phi = \text{golden ratio} \approx 1.618\)

Ex: \(F(50) \approx 1.2 \times 10^{10}\)

```java
public static long F(int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```
Is this an efficient way to compute $F(50)$?

```java
public static long F(int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```
Recursion Challenge 2 (easy and also important)

Is this an efficient way to compute $F(50)$?

```java
long[] F = new long[51];
F[0] = 0; F[1] = 1;
if (n == 1) return 1;
for (int i = 2; i <= 50; i++)
    F[i] = F[i-1] + F[i-2];
```
Summary

How to write simple recursive programs?
• Base case, reduction step.
• Trace the execution of a recursive program.
• Use pictures.

Why learn recursion?
• New mode of thinking.
• Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Exponential time.
• Easy to specify recursive program that takes exponential time.
• Don’t do it unless you plan to (and are working on a small problem).