COS 528
Nearest Common Ancestors

© Robert E. Tarjan 2013
Nearest common ancestors

Given a rooted tree T and a set Q of pairs of vertices (x, y), find the nearest common ancestor $nca(x, y)$ of each pair.

$nca(e, h) = a$

$nca(f, m) = c$

$nca(c, l) = c$
Nearest common ancestors (off-line)

Depth-first traversal using named sets

Do a depth-first traversal of the tree T. For each vertex x visited in preorder, maintain a set named x, containing x and all descendants of x so far visited in postorder. If (x, y) is a query pair with x visited second in preorder, $nca(x, y)$ is the name of the set containing y when x is visited in preorder.
Implementation

\(C(x) = \text{children of } x, \ Q(x) = \text{query pairs } (x, y), \)

\(t = \text{root of } T \)

\(\text{traverse}(t) \text{ where } \text{traverse}(x) = \)

\{ \text{make-set}(x, x); \)

\textbf{for} \((x, y) \in Q(x) \) \textbf{do}

\hspace{1cm} \textbf{if } y \text{ in a set then } \text{nca}(x, y) \leftarrow \text{find-name}(y) \)

\textbf{for} \(y \in C(x) \) \textbf{do} \{ \text{traverse}(y); \text{unite}(y, x, x) \}\}
\[Q = \{(e, h), (f, m), (c, l)\} \]
\[Q = \{(e, h), (f, m), (c, l)\} \]
$Q = \{(e, h), (f, m), (c, l)\}$
\[Q = \{(e, h), (f, m), (c, l)\} \]
\[Q = \{(e, h), (f, m), (c, l)\} \]

\[nca(c, l) = \text{find-name}(c) = c \]
\[Q = \{(e, h), (f, m), (c, l)\}\]

\[nca(f, m) = find-name(f) = c \]
\[Q = \{(e, h), (f, m), (c, l)\} \]

\[nca(e, h) = \text{find-name}(e) = a \]
Correctness of \textit{nca} algorithm

Let \((x, y)\) be a query pair, \(z = \textit{nca}(x, y)\). Suppose \(x\) is visited in preorder after \(y\). All ancestors of \(y\) that are proper descendants of \(z\) have been visited in postorder by the time \(x\) is visited in preorder, so they are all in the same set as \(z\). In particular, \(x\) is in the same set as \(z\). When \(x\) is visited in preorder, \(z\) has not yet been visited in postorder, so \(\textit{find-name}(y) = z\).
Harder Variants

Tree given off-line but queries given on-line

Tree and queries given on-line
 leaf addition
 root-root links
 root-node links
 links and cuts