Longest increasing subsequence

Longest increasing subsequence. Given a sequence of elements \(c_1, c_2, \ldots, c_n \) from a totally-ordered universe, find the longest increasing subsequence.

Ex. 7 2 8 1 3 4 10 6 9 5.

Application. Part of MUMmer system for aligning entire genomes.

\(O(n^2) \) dynamic programming solution. LIS is a special case of edit-distance.

- \(x = c_1 c_2 \ldots c_n \).
- \(y \) = sorted sequence of \(c_k \), removing any duplicates.
- Mismatch penalty = \(\infty \); gap penalty = 1.

Patience: greedy algorithm

Greedy algorithm. Place each card on leftmost pile that fits.

Observation. At any stage during greedy algorithm, top cards of piles increase from left to right.

Patience solitaire

Patience. Deal cards \(c_1, c_2, \ldots, c_n \) into piles according to two rules:

- Can’t place a higher-valued card onto a lowered-valued card.
- Can form a new pile and put a card onto it.

Goal. Form as few piles as possible.
Patience-LIS: weak duality

Weak duality. In any legal game of patience, the number of piles \(\geq \) length of any increasing subsequence.

Pf.
- Cards within a pile form a **decreasing subsequence.**
- Any increasing sequence can use at most one card from each pile.

Patience-LIS: strong duality

Theorem. [Hammersley 1972] Min number of piles = max length of an IS; moreover greedy algorithm finds both.

Pf. Each card maintains a pointer to top card in previous pile.
- Follow pointers to obtain IS whose length equals the number of piles.
- By weak duality, both are optimal.

Greedy algorithm: implementation

Theorem. The greedy algorithm can be implemented in \(O(n \log n) \) time.
- Use \(n \) stacks to represent \(n \) piles.
- Use binary search to find leftmost legal pile.

Algorithm:

1. **Initialize** an array of \(n \) empty stacks \(S_1, S_2, \ldots, S_n. \)
2. **For** \(i = 1 \) to \(n \)
 - \(S_j \leftarrow \) binary search to find leftmost stack that fits \(c_i. \)
 - **Push** \((S_j, c_i) \).
 - \(\text{pred}[c_i] \leftarrow \text{Peek} \left(S_{j-1} \right). \leftarrow \text{null if } j = 1 \)
3. **Return** sequence formed by following pointers from top card of rightmost nonempty stack.

Patience sorting

Patience sorting. Deal all cards using greedy algorithm; repeatedly remove smallest card.

Theorem. For uniformly random deck, the expected number of piles is approximately \(2 n^{1/2} \) and the standard deviation is approximately \(n^{1/6}. \)

Remark. An almost-trivial \(O(n^{3/2}) \) sorting algorithm.

Speculation. [Persi Diaconis] Patience sorting is the fastest way to sort a pile of cards by hand.
Theorem. [Erdős-Szekeres 1935] Any sequence of $n^2 + 1$ distinct real numbers either has an increasing or decreasing subsequence of size $n + 1$.

Pf. [by pigeonhole principle]