Priority queue data type

A min-oriented priority queue supports the following core operations:

- **MAKE-HEAP():** create an empty heap.
- **INSERT(\(H, x\)):** insert an element \(x\) into the heap.
- **EXTRACT-MIN(\(H\)):** remove and return an element with the smallest key.
- **DECREASE-KEY(\(H, x, k\)):** decrease the key of element \(x\) to \(k\).

The following operations are also useful:

- **IS-EMPTY(\(H\)):** is the heap empty?
- **FIND-MIN(\(H\)):** return an element with smallest key.
- **DELETE(\(H, x\)):** delete element \(x\) from the heap.
- **UNION(\(H_1, H_2\)):** replace heaps \(H_1\) and \(H_2\) with their union.

Note. Each element contains a key (duplicate keys are permitted) from a totally-ordered universe.

Priority queue applications

Applications.

- A* search.
- Heapsort.
- Online median.
- Huffman encoding.
- Prim’s MST algorithm.
- Discrete event-driven simulation.
- Network bandwidth management.
- Dijkstra’s shortest-paths algorithm.
- ...
Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Height of complete binary tree with n nodes is $\lceil \log_2 n \rceil$.

Pf. Height increases (by 1) only when n is a power of 2.

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered. For each child, the key in child \leq key in parent.

Explicit binary heap

Pointer representation. Each node has a pointer to parent and two children.
- Maintain number of elements n.
- Maintain pointer to root node.
- Can find pointer to last node or next node in $O(\log n)$ time.
Implicit binary heap

Array representation. Indices start at 1.
- Take nodes in level order.
- Parent of node at k is at $\lfloor k / 2 \rfloor$.
- Children of node at k are at $2k$ and $2k + 1$.

Binary heap demo

Heap ordered

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element with element in its parent until heap order is restored.

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.
Binary heap: decrease key

Decrease key. Given a handle to node, repeatedly exchange element with its parent until heap order is restored.

decrease key of node x to 11

Binary heap: analysis

Theorem. In an implicit binary heap, any sequence of m \textsc{insert}, \textsc{extract-min}, and \textsc{decrease-key} operations with n \textsc{insert} operations takes $O(m \log n)$ time.

Pf.
- Each heap op touches nodes only on a path from the root to a leaf; the height of the tree is at most $\log_2 n$.
- The total cost of expanding and contracting the arrays is $O(n)$.

Theorem. In an explicit binary heap with n nodes, the operations \textsc{insert}, \textsc{decrease-key}, and \textsc{extract-min} take $O(\log n)$ time in the worst case.

Binary heap: find-min

Find the minimum. Return element in the root node.

Binary heap: delete

Delete. Given a handle to a node, exchange element in node with last node; either swim down or sink up the node until heap order is restored.

delete node x or y
Binary heap: union

Union. Given two binary heaps H_1 and H_2, merge into a single binary heap.

Observation. No easy solution: $\Omega(n)$ time apparently required.

[Diagram of two binary heaps H_1 and H_2 merged into a single binary heap]

Binary heap: heapify

Theorem. Given n elements, can construct a binary heap containing those n elements in $O(n)$ time.

Pf.
- There are at most $\lceil n/2^{h+1} \rceil$ nodes of height h.
- The amount of work to sink a node is proportional to its height h.
- Thus, the total work is bounded by:
 \[
 \sum_{h=0}^{\lfloor \log_2 n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil h \leq \sum_{h=0}^{\lfloor \log_2 n \rfloor} nh/2^h \leq 2n
 \]

Corollary. Given two binary heaps H_1 and H_2 containing n elements in total, can implement UNION in $O(n)$ time.

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>
Priority queues performance cost summary

Q. Reanalyze so that \textsc{Extract-Min} and \textsc{Delete} take \(O(1)\) amortized time?

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binary heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textsc{Make-Heap}</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>\textsc{IsEmpty}</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>\textsc{Insert}</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>\textsc{Extract-Min}</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
<td>(O(1)) †</td>
</tr>
<tr>
<td>\textsc{Decrease-Key}</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>\textsc{Delete}</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(1)) †</td>
</tr>
<tr>
<td>\textsc{Union}</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>\textsc{Find-Min}</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

† amortized

Complete \(d\)-ary tree

Binary tree. Empty or node with links to \(d\) disjoint \(d\)-ary trees.

Complete tree. Perfectly balanced, except for bottom level.

Fact. The height of a complete \(d\)-ary tree with \(n\) nodes is \(\leq \lceil \log_d n \rceil\).

Multiway heap: insert

Insert. Add node at end; repeatedly exchange element in child with element in parent until heap order is restored.

Running time. Proportional to height = \(O(\log_d n)\).
Multiway heap: extract the minimum

Extract min. Exchange root node with last node; repeatedly exchange element in parent with element in largest child until heap order is restored.

Running time. Proportional to \(d \times \text{height} = O(d \log_d n) \).

Multiway heap: decrease key

Decrease key. Given a handle to an element \(x \), repeatedly exchange it with its parent until heap order is restored.

Running time. Proportional to height = \(O(\log_d n) \).

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>d-ary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>INSERT</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log_d n))</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
<td>(O(d \log_d n))</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log_d n))</td>
</tr>
<tr>
<td>DELETE</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(d \log_d n))</td>
</tr>
<tr>
<td>UNION</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>
Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>d-ary heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log_d n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Goal. $O(\log n)$ INSERT, DECREASE-KEY, EXTRACT-MIN, and UNION.

Binomial tree properties

Def. A binomial tree of order k is defined recursively:
- Order 0: single node.
- Order k: one binomial tree of order $k - 1$ linked to another of order $k - 1$.

Properties. Given an order k binomial tree B_k,
- Its height is k.
- It has 2^k nodes.
- It has $\binom{k}{i}$ nodes at depth i.
- The degree of its root is k.
- Deleting its root yields k binomial trees B_{k-1}, \ldots, B_0.

Pf. [by induction on k]
Binomial heap

Def. A binomial heap is a sequence of binomial trees such that:
- Each tree is min-heap ordered.
- There is either 0 or 1 binomial tree of order k.

Binomial heap representation

Binomial trees. Represent trees using left-child, right-sibling pointers.

Roots of trees. Connect with singly-linked list, with degrees decreasing from left to right.

Binomial heap properties

Properties. Given a binomial heap with n nodes:
- The node containing the min element is a root of B_0, B_1, ..., or B_k.
- It contains the binomial tree B_i iff $b_i = 1$, where $b_i \cdot b_{i-1} b_{i-2} \cdots b_0$ is binary representation of n.
- It has $\leq \lceil \log_2 n \rceil + 1$ binomial trees.
- Its height $\leq \lceil \log_2 n \rceil$.

Binomial heap: union

Union operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Warmup. Easy if H_1 and H_2 are both binomial trees of order k.
- Connect roots of H_1 and H_2.
- Choose node with smaller key to be root of H.
Binomial heap: union

Union operation. Given two binomial heaps H_1 and H_2, (destructively) replace with a binomial heap H that is the union of the two.

Solution. Analogous to binary addition.

Running time. $O(\log n)$.

Pf. Proportional to number of trees in root lists $\leq 2 \left(\left\lfloor \log_2 n \right\rfloor + 1 \right)$. □
Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.
- Find root x with min key in root list of H, and delete.

![Diagram of Extract-min](image)

Binomial heap: decrease key

Decrease key. Given a handle to an element x in H, decrease its key to k.
- Suppose x is in binomial tree B_k.
- Repeatedly exchange x with its parent until heap order is restored.

Running time. $O(\log n)$.

![Diagram of Decrease-key](image)

Binomial heap: delete

Delete. Given a handle to an element x in a binomial heap, delete it.
- **DECREASE-KEY**(H, x, $-\infty$).
- **DELETE-MIN**(H).

Running time. $O(\log n)$.

![Diagram of Delete](image)
Binomial heap: insert

Insert. Given a binomial heap H, insert an element x.

- $H' \leftarrow $ MAKE-HEAP(x).
- $H' \leftarrow $ INSERT(H', x).
- $H \leftarrow $ UNION(H', H).

Running time. $O(\log n)$.

Binomial heap: sequence of insertions

Insert. How much work to insert a new node x?

- If $n = \ldots .0$, then only 1 credit.
- If $n = \ldots .01$, then only 2 credits.
- If $n = \ldots .011$, then only 3 credits.
- If $n = \ldots .0111$, then only 4 credits.

Observation. Inserting one element can take $\Omega(\log n)$ time.

Theorem. Starting from an empty binomial heap, a sequence of n consecutive INSERT operations takes $O(n)$ time.

Pf. $(n / 2)(1) + (n / 4)(2) + (n / 8)(3) + \ldots \leq 2 n$. \[\sum_{i=1}^{k} \frac{i}{2^i} = 2 - \frac{k}{2^k} - \frac{1}{2^{k-1}} \leq 2 \]

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is $O(1)$ and the worst-case cost of EXTRACT-MIN and DECREASE KEY is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \#$ trees in binomial heap H_i.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 1. [INSERT]

- Actual cost $c_i = \text{number of trees merged} + 1$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = \text{number of trees merged} - 1$.
- Amortized cost $= \hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i-1}) = 2$.

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is $O(1)$ and the worst-case cost of EXTRACT-MIN and DECREASE KEY is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \#$ trees in binomial heap H_i.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 2. [DECREASE-KEY]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i-1}) = 0$.
- Amortized cost $= \hat{c}_i = c_i = O(\log n)$.

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is $O(1)$ and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is $O(\log n)$.

Pf. Define potential function $\Phi(H_i) = \text{trees}(H_i) = \# \text{ trees in binomial heap } H_i$.

- $\Phi(H_0) = 0$.
- $\Phi(H_i) \geq 0$ for each binomial heap H_i.

Case 3. [EXTRACT-MIN or DELETE]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) - \Phi(H_{i+1}) \leq \log n$.
- Amortized cost $\hat{c}_i = c_i + \Phi(H_i) - \Phi(H_{i+1}) = O(\log n)$.

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>binomial heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>ISEMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>UNION</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Hopeless challenge. $O(1)$ INSERT, DECREASE-KEY and EXTRACT-MIN. Why?

Challenge. $O(1)$ INSERT and DECREASE-KEY, $O(\log n)$ EXTRACT-MIN.