5. **Divide and Conquer**

- *merge and count demo*
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorted list B</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td>17</td>
<td>23</td>
</tr>
</tbody>
</table>
Given two sorted lists \(A \) and \(B \),

- Count number of inversions \((a, b) \) with \(a \in A \) and \(b \in B \).
- Merge \(A \) and \(B \) into sorted list \(C \).

Merge and count demo

sorted list A

\[
\begin{array}{cccccc}
3 & 7 & 10 & 14 & 18 \\
\end{array}
\]

sorted list B

\[
\begin{array}{cccccc}
2 & 11 & 16 & 17 & 23 \\
\end{array}
\]

compare minimum entry in each list: copy 2 and add \(x \) to inversion count

sorted list C

\[
\begin{array}{cccccc}
\text{ } & \text{ } & \text{ } & \text{ } & \text{ } \\
\end{array}
\]

\(x = 5 \)

inversions = 0
Given two sorted lists A and B,

- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

Merge and count demo

Sorted List A

| 3 | 7 | 10 | 14 | 18 |

Sorted List B

| 2 | 11 | 16 | 17 | 23 |

Sorted List C

| 2 |

Inversions

- $x = 5$
- Inversions = 5
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 17 | 23 |

compare minimum entry in each list: copy 7 and decrement x

sorted list C

| 2 | 3 |

$x = 4$

inversions = 5
Merge and count demo

Given two sorted lists \(A \) and \(B \),

- Count number of inversions \((a, b)\) with \(a \in A \) and \(b \in B \).
- Merge \(A \) and \(B \) into sorted list \(C \).

Sorted list A

\[
\begin{array}{cccc}
3 & 7 & 10 & 14 & 18 \\
\end{array}
\]

Sorted list B

\[
\begin{array}{cccc}
2 & 11 & 16 & 17 & 23 \\
\end{array}
\]

Merge and count demo

compare minimum entry in each list: copy 10 and decrement \(x \)

Sorted list C

\[
\begin{array}{cccc}
2 & 3 & 7 & \\
\end{array}
\]

\[
x = 3 \\
\text{inversions} = 5
\]
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 17 | 23 |

Compare minimum entry in each list: copy 11 and add x to increment count.

sorted list C

| 2 | 3 | 7 | 10 | 16 | 17 | 23 |

$x = 2$

inversions $= 5$
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 14 and decrement x

<table>
<thead>
<tr>
<th>sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11</td>
</tr>
</tbody>
</table>

$x = 2$

inversions = 7
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>14</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>sorted list B</td>
<td>2</td>
<td>11</td>
<td>16</td>
<td>17</td>
<td>23</td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 16 and add x to increment count

<table>
<thead>
<tr>
<th>sorted list C</th>
<th>2</th>
<th>3</th>
<th>7</th>
<th>10</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
</table>

$x = 1$
Inversions = 7
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
<tr>
<td>5 2 1</td>
<td></td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 17 and add x to increment count

<table>
<thead>
<tr>
<th>sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14 16</td>
</tr>
<tr>
<td>$x = 1$</td>
</tr>
<tr>
<td>inversions = 8</td>
</tr>
</tbody>
</table>
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
</tbody>
</table>

compare minimum entry in each list: copy 18 and decrement x

<table>
<thead>
<tr>
<th>sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14 16 17</td>
</tr>
</tbody>
</table>

$x = 1$

inversions $= 9$
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

<table>
<thead>
<tr>
<th>sorted list A</th>
<th>sorted list B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 7 10 14 18</td>
<td>2 11 16 17 23</td>
</tr>
<tr>
<td></td>
<td>5 2 1 1</td>
</tr>
</tbody>
</table>

list A exhausted: copy 23

<table>
<thead>
<tr>
<th>sorted list C</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7 10 11 14 16 17 18</td>
</tr>
</tbody>
</table>

$x = 0$

inversions = 9
Merge and count demo

Given two sorted lists A and B,
- Count number of inversions (a, b) with $a \in A$ and $b \in B$.
- Merge A and B into sorted list C.

sorted list A

| 3 | 7 | 10 | 14 | 18 |

sorted list B

| 2 | 11 | 16 | 17 | 23 |

sorted list C

| 2 | 3 | 7 | 10 | 11 | 14 | 16 | 17 | 18 | 23 |

$x = 0$

inversions $= 9$

done: return 9 inversions