4. **Greedy Algorithms (Part II)**

- *Prim's algorithm demo*
Prim's algorithm demo

Initialize $S =$ any node.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = $ any node.
Repeat $n - 1$ times:
- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.
Prim's algorithm demo

Initialize $S =$ any node.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:

- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.
Prim's algorithm demo

Initialize $S = $ any node.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize S = any node.
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S =$ any node.
Repeat $n – 1$ times:
- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node.}$

Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.

![Graph demonstrating Prim's algorithm]
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
• Add to tree the min weight edge with one endpoint in S.
• Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.

![Diagram of Prim's algorithm demo](image)
Prim's algorithm demo

Initialize $S = \text{any node}$.
Repeat $n - 1$ times:
- Add to tree the min weight edge with one endpoint in S.
- Add new node to S.

![Graph demonstrating Prim's algorithm](image-url)
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.

![Prim's algorithm diagram](image-url)
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.
Prim's algorithm demo

Initialize $S = \text{any node.}$
Repeat $n - 1$ times:
 • Add to tree the min weight edge with one endpoint in S.
 • Add new node to S.

![Diagram of Prim's algorithm](image-url)