4. Greedy Algorithms (Part II)

- Dijkstra's algorithm demo
- improved Dijkstra's algorithm demo
4. Greedy Algorithms (Part II)

- Dijkstra's algorithm demo
- improved Dijkstra's algorithm demo
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e,
$$

add v to S; set $d(v) = \pi(v)$.

![Graph diagram](image.png)
Dijkstra's algorithm demo

- Initialize \(S = \{ s \} \), \(d(s) = 0 \).
- Repeatedly choose unexplored node \(v \) which minimizes

\[
\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e,
\]

add \(v \) to \(S \); set \(d(v) = \pi(v) \).
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,
$$

add v to S; set $d(v) = \pi(v)$.

Diagram:

- s is the starting node.
- Nodes are connected with edges labeled with their weights.
- The algorithm progresses by updating the distances to nodes.
- The path is highlighted with blue arrows.
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v): u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

![Diagram showing Dijkstra's algorithm steps](image)
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.

Dijkstra's algorithm demo

\[\begin{align*}
0 + 16 &= 16 \\
7 + 7 &= 14 \\
8 + 5 &= 13 \\
8 + 6 &= 14
\end{align*}\]
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

\[\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e, \]

add v to S; set $d(v) = \pi(v)$.

![Dijkstra's algorithm diagram]

\[13 + 2 = 15 \]
\[8 + 6 = 14 \]
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes
 \[
 \pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,
 \]
 add v to S; set $d(v) = \pi(v)$.
Dijkstra's algorithm demo

- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u, v) : u \in S} d(u) + \ell_e,$$

add v to S; set $d(v) = \pi(v)$.
4. Greedy Algorithms (Part II)

- Dijkstra's algorithm demo
- improved Dijkstra's algorithm demo

Section 4.4
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \not\in S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S
Improved Dijkstra's algorithm demo

- Initialize \(\pi(s) = 0 \).
- Repeatedly choose \(u \notin S \) with minimum \(\pi(v) \).
 - for each edge \((u, v) \) leaving \(u \), set \(\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \} \)
 - add \(u \) to \(S \)
Improved Dijkstra's algorithm demo

- Initialize $\pi(s) = 0$.
- Repeatedly choose $u \notin S$ with minimum $\pi(v)$.
 - for each edge (u, v) leaving u, set $\pi(v) = \min \{ \pi(v), \pi(u) + \ell(u, v) \}$
 - add u to S