2.3 Recursion
Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
- New mode of thinking.
- Powerful programming paradigm.

Many computations are naturally self-referential.
- Binary search, mergesort, FFT, GCD.
- Linked data structures.
- A folder contains files and other folders.

Closely related to mathematical induction.
Mathematical Induction

Mathematical induction. Prove a statement involving an integer N by

- **base case:** Prove it for some specific N (usually 0 or 1).
- **induction step:** Assume it to be true for all positive integers less than N, use that fact to prove it for N.

Ex. Sum of the first N odd integers is N^2.

Base case: True for $N = 1$.

Induction step:

- Let $T(N)$ be the sum of the first N odd integers: $1 + 3 + 5 + \ldots + (2N - 1)$.
- Assume that $T(N-1) = (N-1)^2$.
- $T(N) = T(N-1) + (2N - 1)$

 $= (N-1)^2 + (2N - 1)$

 $= N^2 - 2N + 1 + (2N - 1)$

 $= N^2$
Recursive Program

Recursive Program. Implement a function having integer arguments by
• **base case**: Do something specific in response to “base” argument values.
• **reduction step**: Assume the function works for the base case, and use the function to implement itself for general argument values.

```java
public static String convert(int x)
{
    if (x == 1) return "1";
    return convert(x/2) + (x % 2);
}
```

Ex 1. Convert positive int to binary string.
Base case: return “1” for \(x = 1 \).
Reduction step:
• convert \(x/2 \) to binary
• append “0” if \(x \) even
• append “1” if \(x \) odd

\[37 \rightarrow 18 \]
\["100101" = "10010" + "1" \]
Recursive Program

Recursive Program. Implement a function having integer arguments by

- **base case:** Implementing it for some specific values of the arguments.
- **reduction step:** Assume the function works for smaller values of its arguments and use it to implement it for the given values.

```java
public class Binary {
    public static int convert(int x) {
        if (x == 1) return "1";
        else return convert(x/2) + (x % 2);
    }

    public static void main(String[] args) {
        int x = Integer.parseInt(args[0]);
        System.out.println(convert(x));
    }
}

% java Binary 6
110
% java Binary 37
100101
% java Binary 999999
11110100001000111111
```

public static String convert(int x) {
 if (x == 1) return "1";
 return convert(x/2) + (x % 2);
}
public static String convert(int x) {
 if (x == 1) return "1";
 return convert(x/2) + (x % 2);
}

public class Binary {
 public static int convert(int x) {
 if (x == 0) return "";
 else return convert(x/2) + (x % 2);
 }
 public static void main(String[] args) {
 int x = Integer.parseInt(args[0]);
 System.out.println(convert(x));
 }
}

% java Binary 6
110
Recursion vs. Iteration

Every program with 1 recursive call corresponds to a loop.

Reasons to use recursion:
• code more compact
• easier to understand
• easier to reason about correctness
• easy to add multiple recursive calls (stay tuned)

Reasons not to use recursion: (stay tuned)

```java
public static String convert(int x) {
    if (x == 1) return "1";
    return convert(x/2) + (x % 2);
}

public static String convertNR(int x) {
    String s = "1";
    while (x > 1) {
        s = (x % 2) + s;
        x = x/2;
    }
    return s;
}
```
Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.

Ex. \(\text{gcd}(4032, 1272) = 24. \)

\[
\begin{align*}
4032 &= 2^6 \times 3^2 \times 7^1 \\
1272 &= 2^3 \times 3^1 \times 53^1 \\
gcd &= 2^3 \times 3^1 = 24
\end{align*}
\]

Applications.
- Simplify fractions: \(1272/4032 = 53/168. \)
- RSA cryptosystem.
Greatest Common Divisor

GCD. Find largest integer that evenly divides into \(p \) and \(q \).

Euclid's algorithm. [Euclid 300 BCE]

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\

gcd(q, p \mod q) & \text{otherwise}
\end{cases}
\]

\[
gcd(4032, 1272) = gcd(1272, 216) = gcd(216, 192) = gcd(192, 24) = gcd(24, 0) = 24.
\]

\[
4032 = 3 \times 1272 + 216
\]
Euclid’s Algorithm

GCD. Find largest integer \(d \) that evenly divides into \(p \) and \(q \).

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 \gcd(q, p \% q) & \text{otherwise}
\end{cases}
\]

- base case
- reduction step, converges to base case

\[
p = 8x \\
q = 3x
\]

\[
gcd(p, q) = \gcd(3x, 2x) = x
\]
Euclid’s Algorithm

GCD. Find largest integer d that evenly divides into p and q.

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 gcd(q, p \% q) & \text{otherwise}
\end{cases}
\]

Recursive program

```java
public static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```

base case

reduction step, converges to base case

base case

reduction step
```c
static int gcd(int p, int q)
{
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```

```

| p = 1272, q = 216 |
```

```
gcd(1272, 216)
```

```
static int gcd(int p, int q)
{
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```
```java
public class Euclid {
    public static int gcd(int p, int q) {
        if (q == 0) return p;
        else return gcd(q, p % q);
    }
    public static void main(String[] args) {
        int p = Integer.parseInt(args[0]);
        int q = Integer.parseInt(args[1]);
        System.out.println(gcd(p, q));
    }
}
```

`% java Euclid 1272 216
24`
Possible debugging challenges with recursion

Missing base case.

```java
public static double BAD(int N) {
    return BAD(N-1) + 1.0/N;
}
```

No convergence guarantee.

```java
public static double BAD(int N) {
    if (N == 1) return 1.0;
    return BAD(1 + N/2) + 1.0/N;
}
```

Both lead to INFINITE RECURSIVE LOOP (bad news).

Try it!

so that you can recognize and deal with it if it later happens to you
Collatz Sequence

Collatz sequence.

- If n is 1, stop.
- If n is even, divide by 2.
- If n is odd, multiply by 3 and add 1.

Ex. 35 106 53 160 80 40 20 10 5 16 8 4 2 1.

public static void collatz(int N) {
 Stdout.print(N + " ");
 if (N == 1) return;
 if (N % 2 == 0) collatz(N / 2);
 collatz(3*N + 1);
}

No one knows whether or not this function terminates for all N (!)
[usually we decrease N for all recursive calls]
Recursive Graphics

New Yorker Magazine, August 11, 2008
H-tree of order n.

- Draw an H.
- Recursively draw 4 H-trees of order n-1, one connected to each tip.
public class Htree
{
 public static void draw(int n, double sz, double x, double y)
 {
 if (n == 0) return;
 double x0 = x - sz/2, x1 = x + sz/2;
 double y0 = y - sz/2, y1 = y + sz/2;

 StdDraw.line(x0, y, x1, y);
 StdDraw.line(x0, y0, x0, y1); ← draw the H, centered on (x, y)
 StdDraw.line(x1, y0, x1, y1);
 draw(n-1, sz/2, x0, y0);
 draw(n-1, sz/2, x0, y1);
 draw(n-1, sz/2, x1, y0);
 draw(n-1, sz/2, x1, y1);
 }

 public static void main(String[] args)
 {
 int n = Integer.parseInt(args[0]);
 draw(n, .5, .5, .5);
 }
}
Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.
Towers of Hanoi

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

Edouard Lucas (1883)
Towers of Hanoi: Recursive Solution

Move n-1 smallest discs right.

Move largest disc left.

cyclic wrap-around

Move n-1 smallest discs right.
Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
 • 64 golden discs on 3 diamond pegs.
 • World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?
public class TowersOfHanoi {

 public static void moves(int n, boolean left) {
 if (n == 0) return;
 moves(n - 1, !left);
 if (left) System.out.println(n + " left");
 else System.out.println(n + " right");
 moves(n - 1, !left);
 }

 public static void main(String[] args) {
 int N = Integer.parseInt(args[0]);
 moves(N, true);
 }
}

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false): move discs 1 to n one pole to the right
Towers of Hanoi: Recursive Solution

% java TowersOfHanoi 3
1 left
2 right
1 left
3 left
1 left
2 right
1 left
% java TowersOfHanoi 4
1 right
2 left
1 right
3 right
1 right
2 left
1 right
4 left
1 right
2 left
1 right
3 right
1 right
2 left
1 right
1 right

every other move is smallest disc

subdivisions of ruler
Remarkable properties of recursive solution.
- Takes $2^n - 1$ moves to solve n disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
- Alternate between two moves:
 - move smallest disc to right if n is even
 - make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.
- Takes 585 billion years for $n = 64$ (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long!
Divide-and-Conquer

Divide-and-conquer paradigm.
- Break up problem into smaller subproblems of same structure.
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
- FFT for signal processing.
- Parsers for programming languages.
- Multigrid methods for solving PDEs.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N-body simulation.
- Midpoint displacement method for fractional Brownian motion.
Fibonacci Numbers
Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[
F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]

Fibonacci rabbits

L. P. Fibonacci (1170 - 1250)
Fibonacci Numbers

pinecone

cauliflower
A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

A natural for recursion?

\[
F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]

FYI (classical math):

\[
F(n) = \frac{\phi^n - (1-\phi)^n}{\sqrt{5}}
\]

\[
\phi = \text{golden ratio} = 1.618
\]

Ex: \(F(50) \approx 1.2 \times 10^{10}\)

```java
public static long F(int n) {
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```
Recursion Challenge 1 (difficult but important)

Is this an efficient way to compute $F(50)$?

```java
public static long F(int n)
{
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```
Is this an efficient way to compute $F(50)$?

```java
long[] F = new long[51];
F[0] = 0; F[1] = 1;
if (n == 1) return 1;
for (int i = 2; i <= 50; i++)
    F[i] = F[i-1] + F[i-2];
```
Summary

How to write simple recursive programs?

• Base case, reduction step.
• Trace the execution of a recursive program.
• Use pictures.

Why learn recursion?

• New mode of thinking.
• Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Exponential time.

• Easy to specify recursive program that takes exponential time.
• Don’t do it unless you plan to (and are working on a small problem).