2.3 Recursion

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
• New mode of thinking.
• Powerful programming paradigm.

Many computations are naturally self-referential.
• Binary search, mergesort, FFT, GCD.
• Linked data structures.
• A folder contains files and other folders.

Closely related to mathematical induction.

Mathematical Induction

Mathematical induction. Prove a statement involving an integer N by
• base case: Prove it for some specific N (usually 0 or 1).
• induction step: Assume it to be true for all positive integers less than N, use that fact to prove it for N.

Ex. Sum of the first N odd integers is N².

Base case: True for N = 1.

Induction step:
• Let T(N) be the sum of the first N odd integers: 1 + 3 + 5 + ... + (2N - 1).
• Assume that T(N-1) = (N-1)².
• T(N) = T(N-1) + (2N - 1)
 = (N-1)² + (2N - 1)
 = N² - 2N + 1 + (2N - 1)
 = N²
Recursive Program

Implement a function having integer arguments by

• **base case**: Do something specific in response to "base" argument values.

• **reduction step**: Assume the function works for the base case, and use the function to implement itself for general argument values.

Ex 1. Convert positive int to binary String.

Base case: return "1" for \(x = 1 \).

Reduction step:
- convert \(x/2 \) to binary
- append "0" if \(x \) even
- append "1" if \(x \) odd

```java
public class Binary {
    public static int convert(int x) {
        if (x == 1) return 1;
        else return convert(x/2) + (x % 2);
    }
    public static void main(String[] args) {
        int x = Integer.parseInt(args[0]);
        System.out.println(convert(x));
    }
}
```

```java
% java Binary 6
110
% java Binary 37
100101
% java Binary 999999
11110100001000111111
```
Recursion vs. Iteration

Every program with 1 recursive call corresponds to a loop.

Reasons to use recursion:
• code more compact
• easier to understand
• easier to reason about correctness
• easy to add multiple recursive calls (stay tuned)

Reasons not to use recursion: (stay tuned)

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into \(p \) and \(q \).

Ex. \(\text{gcd}(4032, 1272) = 24 \).

\[
\begin{align*}
4032 &= 2^6 \times 3^1 \\
1272 &= 2^3 \times 3^1 \times 53^1 \\
\text{gcd} &= 2^3 \times 3^1 = 24
\end{align*}
\]

Applications.
• Simplify fractions: \(\frac{1272}{4032} = \frac{53}{168} \).
• RSA cryptosystem.

Euclid’s Algorithm

Gcd. Find largest integer \(d \) that evenly divides into \(p \) and \(q \).

\[
\text{gcd}(p, q) = \begin{cases}
p & \text{if } q = 0 \\
\text{gcd}(q, p \% q) & \text{otherwise}
\end{cases}
\]

base case

reduction step, converges to base case

Euclid’s algorithm: [Euclid 300 BCE]

\[
\begin{align*}
\text{gcd}(p, q) &= \begin{cases}
p & \text{if } q = 0 \\
\text{gcd}(q, p \% q) & \text{otherwise}
\end{cases} \\
\end{align*}
\]

\[
\begin{array}{c|c|c|c}
\text{p} & \text{q} & \text{p \% q} \\
\hline
4032 & 1272 & 216 \\
1272 & 216 & 192 \\
216 & 192 & 24 \\
192 & 24 & 0 \\
\end{array}
\]

\[
\begin{align*}
p &= 8x \\
q &= 3x
\end{align*}
\]

\[
\text{gcd}(p, q) = \text{gcd}(3x, 2x) = x
\]
Euclid's Algorithm

GCD. Find largest integer \(d\) that evenly divides into \(p\) and \(q\).

\[
gcd(p, q) = \begin{cases}
 p & \text{if } q = 0 \\
 gcd(q, p \mod q) & \text{otherwise}
\end{cases}
\]

```java
public static int gcd(int p, int q) {
    if (q == 0) return p;
    else return gcd(q, p % q);
}
```

Recursive program

```java
public class Euclid {
    public static int gcd(int p, int q) {
        if (q == 0) return p;
        else return gcd(q, p % q);
    }
    public static void main(String[] args) {
        int p = Integer.parseInt(args[0]);
        int q = Integer.parseInt(args[1]);
        System.out.println(gcd(p, q));
    }
}
```

Possible debugging challenges with recursion

Missing base case.

```java
public static double BAD(int N) {
    return BAD(N-1) + 1.0/N;
}
```

No convergence guarantee.

```java
public static double BAD(int N) {
    if (N == 1) return 1.0;
    return BAD(1 + N/2) + 1.0/N;
}
```

Both lead to \textit{INFINITE RECURSIVE LOOP} (bad news).

Try it! so that you can recognize and deal with it if it later happens to you.
Collatz Sequence

- If \(n \) is 1, stop.
- If \(n \) is even, divide by 2.
- If \(n \) is odd, multiply by 3 and add 1.

Ex. 35 106 53 160 80 40 20 10 5 16 8 4 2 1.

No one knows whether or not this function terminates for all \(n \) (!) [usually we decrease \(n \) for all recursive calls]

Recursive Graphics

Htree

- Draw an H.
- Recursively draw 4 H-trees of order \(n-1 \), one connected to each tip.

Public static void collatz(int \(N \))
{
 Stdout.print(\(N + " \) + " ");
 if (\(N == 1 \)) return;
 if (\(N \% 2 == 0 \)) collatz(\(N / 2 \));
 collatz(3*\(N + 1 \));
}
Htree in Java

```java
public class Htree {
    public static void draw(int n, double sz, double x, double y) {
        if (n == 0) return;
        double x0 = x - sz/2, x1 = x + sz/2;
        double y0 = y - sz/2, y1 = y + sz/2;
        StdDraw.line(x0, y, x1, y);
        StdDraw.line(x0, y0, x0, y1);  // draw the H, centered on (x, y)
        StdDraw.line(x1, y0, x1, y1);
        draw(n-1, sz/2, x0, y0);
        draw(n-1, sz/2, x0, y1);  // recursively draw 4 half-size Hs
        draw(n-1, sz/2, x1, y0);
        draw(n-1, sz/2, x1, y1);
    }

    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        draw(n, .5, .5, .5);
    }
}
```

Animated H-tree

Animated H-tree. Pause for 1 second after drawing each H.

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.
- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.
Towers of Hanoi: Recursive Solution

public class TowersOfHanoi
{
 public static void moves(int n, boolean left)
 {
 if (n == 0) return;
 moves(n-1, !left);
 if (left) System.out.println(n + " left");
 else System.out.println(n + " right");
 moves(n-1, !left);
 }
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 moves(N, true);
 }
}

moves(n, true) : move discs 1 to n one pole to the left
moves(n, false) : move discs 1 to n one pole to the right

cyclic wrap-around

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
 • 64 golden discs on 3 diamond pegs.
 • World ends when certain group of monks accomplish task.

Q. Will computer algorithms help?
Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution.
- Takes $2^n - 1$ moves to solve n disc problem.
- Sequence of discs is same as subdivisions of ruler.
- Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!
- Alternate between two moves:
 - move smallest disc to right if n is even
 - make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.
- Takes 585 billion years for $n = 64$ (at rate of 1 disc per second).
- Reassuring fact: any solution takes at least this long!

Divide-and-Conquer

Divide-and-conquer paradigm.
- Break up problem into smaller subproblems of same structure.
- Solve subproblems recursively using same method.
- Combine results to produce solution to original problem.

Many important problems succumb to divide-and-conquer.
- FFT for signal processing.
- Parsers for programming languages.
- Multigrid methods for solving PDEs.
- Quicksort and mergesort for sorting.
- Hilbert curve for domain decomposition.
- Quad-tree for efficient N-body simulation.
- Midpoint displacement method for fractional Brownian motion.

Fibonacci Numbers
Fibonacci Numbers

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

\[
F_n = \begin{cases}
0 & \text{if } n = 0 \\
1 & \text{if } n = 1 \\
F_{n-1} + F_{n-2} & \text{otherwise}
\end{cases}
\]

A Possible Pitfall With Recursion

Fibonacci numbers. 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Ex: \(F(50) = 1.2 \times 10^6\)

Recursion Challenge 1 (difficult but important)

Is this an efficient way to compute \(F(50)\)?

\[
F(n) = \frac{\phi^n - (-\phi)^{-n}}{\sqrt{5}}
\]

\(\phi \approx 1.618\)

FYI (classical math):

```
public static long F(int n)
{
    if (n == 0) return 0;
    if (n == 1) return 1;
    return F(n-1) + F(n-2);
}
```
Is this an efficient way to compute $F(50)$?

```java
long[] F = new long[51];
F[0] = 0; F[1] = 1;
if (n == 1) return 1;
for (int i = 2; i <= 50; i++)
    F[i] = F[i-1] + F[i-2];
```

Summary

How to write simple recursive programs?
- Base case, reduction step.
- Trace the execution of a recursive program.
- Use pictures.

Why learn recursion?
- New mode of thinking.
- Powerful programming tool.

Divide-and-conquer. Elegant solution to many important problems.

Exponential time.
- Easy to specify recursive program that takes exponential time.
- Don’t do it unless you plan to (and are working on a small problem).