Clustering: Overview and K-means algorithm

K-Means illustrations thanks to 2006 student Martin Makowiecki

Informal goal
- Given set of objects and measure of similarity between them, group similar objects together
- What mean by “similar”?
- What is good grouping?
- Computation time / quality tradeoff

General types of clustering
- “Soft” versus “hard” clustering
 - Hard: partition the objects
 - each object in exactly one partition
 - Soft: assign degree to which object in cluster
 - view as probability or score
- flat versus hierarchical clustering
 - hierarchical = clusters within clusters

Applications:
- Many
 - biology
 - astronomy
 - computer aided design of circuits
 - information organization
 - marketing
 - …

Clustering in information search and analysis
- Group information objects
 ⇒ discover topics
 ? other groupings desirable
- Clustering versus classifying
 - classifying: have pre-determined classes with example members
 - clustering:
 - get groups of similar objects
 - added problem of labeling clusters by topic
 - e.g. common terms within cluster of docs.

Example applications in search
- Query evaluation: cluster pruning (§7.1.6)
 - cluster all documents
 - choose representative for each cluster
 - evaluate query w.r.t. cluster reps.
 - evaluate query for docs in cluster(s) having most similar cluster rep.(s)
- Results presentation: labeled clusters
 - cluster only query results
 - e.g. Clusty.com (metasearch)
Issues
• What attributes represent items for clustering purposes?
• What is measure of similarity between items?
 • General objects and matrix of pairwise similarities
 • Objects with specific properties that allow other specifications of measure
 – Most common:
 » Objects are d-dimensional vectors
 » Euclidean distance
 » Cosine similarity
 • What is measure of similarity between clusters?

Issues continued
• Cluster goals?
 – Number of clusters?
 – Flat or hierarchical clustering?
 – Cohesiveness of clusters?
• How evaluate cluster results?
 – Relates to measure of closeness between clusters
• Efficiency of clustering algorithms
 – Large data sets ⇒ external storage
• Maintain clusters in dynamic setting?
• Clustering methods? - MANY!

Quality of clustering
• In applications quality of clustering depends on how well solves problem at hand
• Algorithm uses measure of quality that can be optimized, but that may or may not do a good job of capturing application needs.
• Underlying graph-theoretic problems usually NP-complete
 – E.g. graph partitioning
• Usually algorithm not finding optimal clustering

General types of clustering methods
• Constructive versus iterative improvement
 – Constructive: decide in what cluster each object belongs and don’t change
 • Often faster
 – Iterative improvement: start with a clustering and move objects around to see if can improve clustering
 • Often slower but better

Vector model: K-means algorithm
• Well known, well used
• Flat clustering
• Number of clusters picked ahead of time
• Iterative improvement
• Uses notion of centroid
• Typically uses Euclidean distance

K-means overview
• Choose k points among set to cluster
 – Call them k centroids
• For each point not selected, assign it to its closest centroid
 – All assignment give initial clustering
• Until “happy” do:
 – Recompute centroids of clusters
 • New centroids may not be points of original set
 – Reassign all points to closest centroid
 • Updates clusters
An Example
start: choose centroids and cluster

An Example
recompute centroids

An Example
re-cluster around new centroids

An Example
2nd recompute centroids and re-cluster

An Example
3rd (final) recompute and re-cluster

Details for K-means
- Need definition of centroid
 \[c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x \] for \(i \)th cluster \(C_i \) containing objects \(x \)
- Need definition of distance to (similarity to) centroid
- Typically vector model with Euclidean distance
- Minimizing sum of squared distances of each point to its centroid = Residual Sum of Squares
 \[RSS = \sum_{i=1}^{k} \sum_{x \in C_i} \text{dist}(c_i, x)^2 \]
K-means performance
• Can prove RSS decreases with each iteration, so converge
• Can achieve local optimum
 – No change in centroids
• Running time depends on how demanding stopping criteria
• Works well in practice
 – speed
 – quality

Time Complexity of K-means
• Let t_{dist} be the time to calculate the distance between two objects
• Each iteration time complexity:
 $O(Kn^*t_{dist})$
 \(n \) = number of objects
• Bound number of iterations I giving
 $O(IK^*n^*t_{dist})$
• for m-dimensional vectors:
 $O(IK^*n^*m)$
 \(m \) large and centroids not sparse

Space Complexity of K-means
• Store points and centroids
 – vector model: $O((n + K)m)$
• External algorithm versus internal?

Space Complexity of K-means
• Store points and centroids
 – vector model: $O((n + K)m)$
• External algorithm versus internal?
 – store k centroids in memory
 – run through points each iteration

Choosing Initial Centroids
• Bad initialization leads to poor results

 Optimal Not Optimal

Choosing Initial Centroids
Many people spent much time examining how to choose seeds
• Random
 – Fast and easy, but often poor results
• Run random multiple times, take best
 – Slower, and still no guarantee of results
• Pre-conditioning
 – remove outliers
• Choose seeds algorithmically
 – run hierarchical clustering on sample points and use resulting centroids
 – Works well on small samples and for few initial centroids
K-means weakness
Non-globular clusters

K-means weakness
Wrong number of clusters

K-means weakness
Outliers and empty clusters

Real cases tend to be harder
• Different attributes of the feature vector have vastly different sizes
 – size of star versus color
• Can weight different features
 – how weight greatly affects outcome
• Difficulties can be overcome