1 Problem Set 6

Problem 1 Prove or disprove the following statements:

1. If \(A, B \in \mathcal{NP} \), then \(A \cap B \in \mathcal{NP} \) and \(A \cup B \in \mathcal{NP} \).
2. If \(A \) and \(B \) are two \(\mathcal{NP} \)-complete languages, then \(A \cap B \) is \(\mathcal{NP} \)-complete.
3. If \(A \) and \(B \) are two \(\mathcal{NP} \)-complete languages, then \(A \cup B \) is \(\mathcal{NP} \)-complete.

Solution.
1. Answer: TRUE. \(A \cap B \in \mathcal{NP} \) and \(A \cup B \in \mathcal{NP} \).

If \(A \) and \(B \) are in \(\mathcal{NP} \), then, by the definition, there exist polynomial time algorithms \(M_A \) and \(M_B \) such
\[
x \in A \text{ if and only if } \exists w_A \ M_A(x, w_A) = 1;
\]
\[
x \in B \text{ if and only if } \exists w_B \ M_B(x, w_B) = 1.
\]

Let us construct an algorithm that decides whether \("x \in A \cap B" \), given a witness \(w \).

| Input: x and a witness w. The algorithms expects w to be a pair \((w_A, w_B)\), where \(w_A\) is a witness for \(x \in A\); \(w_B\) is a witness for \(x \in B\). |
| Output: 1 – accept; or 0 – reject |
| 1. Let \(w_A \) and \(w_B \) be the first and the second components of the pair \(w \); that is, \((w_A, w_B) = w \) (if \(w \) is not a pair of words, then Reject.) |
| 2. if \(M_A(x, w_A) = 1 \) and \(M_B(x, w_B) = 1 \), then Accept; else Reject |

If \(x \in A \cap B \), then the algorithm accepts \(x \) with the witness \(w = (w_A, w_B) \), since \(M_A(x, w_A) = 1 \) and \(M_B(x, w_A) = 1 \).
If \(x \notin A \cap B \), then \(x \notin A \) or \(x \notin B \). Assume without loss of generality that \(x \notin A \). Hence for every \(w_A, M_A(x, w_A) = 0 \). Therefore, the if-condition is false and the algorithm rejects \(x \). Similarly, we can prove that \(A \cup B \in \mathcal{NP} \).
2. **Answer: FALSE.** There exist \mathcal{NP}-complete languages A and B such that $A \cap B$ is not \mathcal{NP}-complete. Example:

\[
A = \{1\#x : x \in SAT \} ; \\
B = \{0\#x : x \in SAT \} .
\]

Remark: $\#$ denotes concatenation e.g. $0\#10111 = 010111$.

The languages A and B are \mathcal{NP}-complete (why?). On the other hand, $A \cap B$ is the empty set; and thus it is not \mathcal{NP}-complete.

3. **Answer: FALSE.** There exist \mathcal{NP}-complete languages A and B such that $A \cup B$ is not \mathcal{NP}-complete. Example:

\[
A = \{1\#x : x \in SAT \} \cup \{0\#x : x \in \{0,1\}^* \} ; \\
B = \{0\#x : x \in SAT \} \cup \{1\#x : x \in \{0,1\}^* \} .
\]

The languages A and B are \mathcal{NP}-complete (prove it). On the other hand, $A \cup B$ contains all binary strings (i.e. $A \cup B = \{0,1\}^*$); and thus it is not \mathcal{NP}-complete.

Definition 1 (Circuit Minimization Problem). Given a circuit C determine if there exists a smaller circuit that computes the same function as C.

Problem 2 Prove that if the SAT problem is in \mathcal{P}, then the Circuit Minimization Problem is solvable in polynomial time.

Solution. We will show that

1. The Circuit Minimization Problem is in $\Pi_2 = \text{co-}\Sigma_2$;

2. If $\mathcal{P} = \mathcal{NP}$, then $\Sigma_2 = \mathcal{P}$.

Therefore, if SAT $\in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$ (since SAT is \mathcal{NP}-complete) and the Circuit Minimization Problem is in $\Pi_2 = \mathcal{P}$.

Recall, that a language L is in Σ_2 (by the definition) if there exists a polynomial algorithm A such that

\[
x \in L \text{ if and only if } \exists w_1 \forall w_2 \ A(x, w_1, w_2) = 1 . \tag{1}
\]

Here the witnesses w_1 and w_2 are of polynomial size.

I. A circuit C is not minimal, if there exists a smaller circuit C' that is equivalent to C. In other words, C is not minimal if there exists a circuit C' such that for every input x:

- $C'(x) = C(x)$ (that is, C' is equivalent to C);
- $\text{size}(C') < \text{size}(C)$.

From this characterization, we get that the complement to the Circuit Minimization Problem is in Σ_2. Thus the problem itself is in co-$\Sigma_2 = \Pi_2$.

II. We now need to show that if $P = NP$, then $\Sigma_2 = P$. Consider an arbitrary language L in Σ_2 defined as follows:

$$x \in L \text{ if and only if } \exists w_1 \forall w_2 A(x, w_1, w_2) = 1.$$ \hspace{1cm} (2)

Define a new language L':

$$L' = \{(x, w_1) : \forall w_2 A(x, w_1, w_2) = 1\}.$$

Now rewrite (2) in a slightly different way:

$$x \in L \text{ if and only if } \exists w_1 \text{ s.t. } (x, w_1) \in L'.$$ \hspace{1cm} (3)

Observe, that L' is in co-NP. Thus there exists a polynomial time algorithm B deciding the language L' (we assume that $P = NP$). Hence (3) is equivalent to

$$x \in L \text{ if and only if } \exists w_1 \text{ s.t. } B(x, w_1).$$

But this is an NP-statement, thus the problem can be solved in polynomial time (again, we assume that $P = NP$). \hfill \Box