Lists

top, push, pop = stack

top, inject, pop = queue

top, push, inject, pop = stack-ended queue = steque

all six = double-ended queue = deque

catenation
List Representations with $O(1)$-time operations

Singly-linked gives stacks

Singly-linked circular (or ptrs to front, rear)
gives queues with catenation

Doubly-linked circular (or ptrs to front, rear)
gives deques with catenation

Array with wraparound gives deque (no catenation)
Persistence

Preserve old versions as well as new (non-destructive updates)

Just for access: partial persistence
For access + update: full persistence
For access + update + combining: confluent persistence

Problem: obtain confluently persistent catenable deques with $O(1)$-time operations
General result for making linked structures persistent (Driscoll, Sarnak, Sleator, Tarjan '89) gives fully persistent deques but $O(1)$ time bound is amortized no catenation

(Driscoll et al. result has been made worst-case)
(Pure) LISP

Atoms, lists

\[\text{cons} (x, y) \text{ yields } [x, y] \]
\[\text{car} ([x, y]) \text{ yields } x \]
\[\text{cdr} ([x, y]) \text{ yields } y \]

(Impure)

\[\text{replace}, \text{ replace} \]

What data structures can be built in pure LISP? (or your favorite functional programming language)
Pure LISP gives (confluent) persistence automatically (no rewriting)

Can build stacks, trees

Queues?

Queues with catenation?
 (= steques with catenation)

Deques with catenation?

(LISP cat: reverse front list, copy onto rear list - time = length of front list)
Deque as two stacks:

```
    ← front | rear →
```

When one part is empty, create new front, rear, each with half

$O(1)$ amortized time

Incrementally recopying gives $O(1)$ worst-case time

Catenation ??

Note: self-catenation allows building

of exponentially-sized structures
\[x_1 = [a] \]

\[x_2 = \text{cat}(x_1, x_2) \]

\[x_3 = \text{cat}(x_2, x_2) \]

\[\vdots \]

\[x_k = \text{cat}(x_{k-1}, x_{k-1}) \]

\[x_k \text{ is a list of } 2^k \text{ a's} \]
History

Kosaraju: real-time simulation of a fixed number of catenable deques by non-catenable deques (but no self-catenation) 1979

real-time simulation of a variable number of catenable min-deques on a RAM 1994
(not confluentlly persistent)

Balanced trees: $O(\log n)$

Driscoll et al. $O(\log \log k)$ for k^{th} op. 1994

Buchsbaum & Tarjan $O(\log^* k)$ 1995

\Rightarrow Kaplan & Tarjan $O(1)$ 1999
Amortized, with memoization

Okasaki 1995

Kaplan, Okasaki, Tanjan 2000

Our goal: simplify!
Redundant Binary Numbers

Goal: add or subtract 1 without carries

Solution:

Allow 2 as a digit (as well as 0, 1)

Require regularity: 0's and 2's alternate,

ignoring 1's.

2110 1112 01
1021 120112

regular
not

0-exposed: rightmost non-1 is a 0
2-exposed: rightmost non-1 is a 2
0-fix: eliminate 0-exposure

2-fix: eliminate 2-exposure

0-fix: rightmost 0: 10 → 02
 20 → 12

2-fix: rightmost 2: 02 → 10
 12 → 20

Add 1: if 2-exposed, 2-fix, then add 1 (no carry)

Subtract 1: if 0-exposed, 0-fix, then subtract 1 (no carry)

112101121 + 1
112101201 2-fix
112101202 add 1
Data structure:

Stack of stacks of digits,
each stack a maximal block of
all 1's except rightmost digit

1112|110|120|11112|1111

Each block, except possibly the rightmost,
ends in a 0 or 2

Fix must access the right end of the rightmost
or second-rightmost block
Deques (without catenation)

Recursive representation:

empty \(\emptyset \) or singleton \([x]\)

or \([p, c, s]\)

where \(p\) and \(s\) are buffers of

0, 1, or 2 elements

and \(c\) is a child deque of

pairs of elements

Regularity: ignoring the bottom deque (empty or singleton)

prefix sizes form a redundant binary number, as do suffix sizes

(topmost size = rightmost digit)

Forbidden configurations: \([0,0,1],[1,0,0],\)

\([0,0,2],[2,0,0],\)

\([0,1,0]\)

\([x]\) is the unique 1-element deque, \([1,0,1]\) the unique

2-element deque)
push, inject like +1
pop, eject like -1
need 0-fix, 2-fix on both sides
must deal with two sides, interaction
at bottom deque
Prefixed operations
(suffix side symmetric)

\[n\text{-push} (x, d) = \]
\[\text{if } d = \emptyset \text{ then } \{x\} \]
\[\text{else if } d = \{y\} \text{ then } \{\{x\}, \emptyset, \{y\}\} \]
\[\text{else if } d = \{\emptyset, c, s\} \text{ then } \{\{x\}, c, s\} \]
\[\text{else if } d = \{\{y\}, c, s\} \text{ then } \{\{x, y\}, c, s\} \]

\[2\text{-fix} (d) : \]
\[\text{let } d' = \{p', c', s'\} \text{ be the topmost descendant} \]
\[\text{deque in } d \text{ with } |p'| = 2. \text{ Replace } d' \text{ in } d \]
\[\text{by } \{\emptyset, n\text{-push}(p', c'), s'\} \]

\[\text{push} (x, d) : \text{if } d \text{ is 2- exposed then} \]
\[n\text{-push} (x, 2\text{-fix} (d)) \]
\[\text{else } n\text{-push} (x, d) \]
\(n \cdot \text{pop}(d) \):
\[\begin{align*}
&\text{if } d = \emptyset \text{ then error} \\
&\text{else if } d = [x] \text{ then } \emptyset \\
&\text{else if } d = [[x], x, [y]] \text{ then } [y] \\
&\text{else if } d = [[x], [y], z] \text{ then } [[y], \emptyset, [z]] \\
&\text{else if } d = [[x], c, s] \text{ then } [\emptyset, c, s] \\
&\text{else if } d = [[x, y], c, s] \text{ then } [[y], c, s]
\end{align*} \]

\(o \cdot \text{fix}(d) \):
\[\text{let } d' = [\emptyset, c', s'] \text{ be the topmost descendant deque in } d \text{ with } o \text{-prefix. Replace } d' \text{ in } d \text{ by } [[\text{top}(c'), n \cdot \text{pop}(c'), s']] \]

\(\text{pop}(d) \):
\[\text{if } d \text{ is } o \text{-exposed then } n \cdot \text{pop}(o \cdot \text{fix}(d)) \]
\[\text{else } n \cdot \text{pop}(d) \]
Need to access topmost non-1 prefix and suffix

Data structure:

stack of stacks of stacks (S^3)

inner stack: maximum block with only
topmost not [1, -, 1] (or [1])

stack of stacks: maximum block of
inner stacks without both a
0 or 2- prefix and a 0 or 2- suffix
(in the same of different) stacks
except on top
Yet another deque representation
but - $O(\log k)$-time access
to k^{th} from either end

Like finger search trees

No concatenation yet!

Idea: convert concatenate to push/inject(s)

Child deque elements more complicated:
contain stored deques

pop calls cat calls inject

no circularity!
Steques with Catenation

steque = 0 to 3 elements
or \([p, c, d]\)

with \(p, d\) of 1-4 elements
\(c\) a steque of entries

entry = pair or triple or
\([\text{pair or triple, steque}]\)

\([\ldots, [[\ldots, s]], [[\ldots, t]] \cdot \ldots] \]

2-buffers are "mid", 1-buffers"low",
3 and 4- buffers "high"

Need low-fix and high-fix
Catenation:

\([P_1, c_1, s_1] \& [P_2, c_2, d_2]\]

Combine \(s_1\) and \(s_2\). Inject pairs/triples from \(s_1\&s_2\) into \(c_1\). Last inject is of \([P, c_2]\).

Result is \([P_1, c', d_2]\), where \(c'\) is formed from \(c_1\) by the injections.

Low-fix (new case)

\([Lx], c, s]\):

if top\((c) = [b, d]:

result is \([Lx] & b, d & c', s\]

where \(c' = \text{pop}(c)\)

Details, details...
Deques with Catenation

deque = 0-7 elements
or \([p, c, s]\)
or \([p, c_1, m, c_2, s]\)

where \(p, s\) have 3-6 elements
\(m\) has 2(or 3?) elements

c, \(c_1, c_2\) are child deques of entries

entry = pair or triple or
\([pair or triple, deque, pair or triple]\)

(deque in entries are non-empty)

Note: the skeleton of the structure is now
not unary (linear) but binary (tree)

pop/eject call eat calls push/inject
3 - buffers are "low"

5, 6 - buffers are "high"

Regularity along left paths and right paths in the tree
Cateration

\[[p_1, c_1, m_1, c_2, s_1] \land [p_2, c_2, m_2, c_3, s_2] \]

\[\text{inject(s)} \]

\[[p_1, c_5, m_3, c_6, s_2] \]

Low-fix like steques

Data Structure:

Split into paths at zig-zags

(left child of right child
or vice versa)

Represent paths using \(S^3 \)

Each node is grouped with its (unique) child path
Path represented by S^3

Child path grouped with node on parent path
Benefits

Smaller buffers: as small or smaller than for amortized structure

Previous deque structure (worst-case)
doesn't even have constant size buffers
(uses nonconcatenable deques as buffers)
and has a more complicated regularity condition.

New S^3 data structure

Deques with catenation via linear skeleton?
I don't think so.

Finger search trees with catenation in LISP?
Best to date is $O(\log \log n)$