Overview

Lecture T3:
- What is an algorithm?
 - Turing machine
- Which problems can be solved on a computer?
 - not the halting problem

Lecture T4:
- Which algorithms will be useful in practice?
 - analysis of algorithms

This lecture:
- Which problems can be solved in practice?
 - probably not TSP

Some Hard Problems

3-COLOR: Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

YES instance.

3-COLOR: Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

NO instance.
Some Hard Problems

CIRCUIT-SAT: Is there a way to assign inputs to a given Boolean (combinational) circuit that makes it true?

YES instance. NO instance.

FACTOR: Given two positive integers x and U, is there a nontrivial factor of x that is less than U?

- Factoring is at the heart of RSA encryption.

Example 1: $x = 23,536,481,273$, $U = 110,000$.
- YES: $x = 104,729 \times 224,737$.

Example 2: $x = 23,536,481,273$, $U = 100,000$.
- NO: $104,729 \times 224,737$ is prime factorization of x.

Example 3: $x = 23,536,481,277$, $U = 23,536,481,277$.
- NO: x is prime.

TSP: A travelling salesperson needs to visit N cities. Is there a route of length at most D?

More Hard Problems

More hard computational problems.

- Biology: protein folding.
- Chemistry: chemical synthesis.
- Civil engineering: equilibrium of urban traffic flow.
- Finance: find minimum risk portfolio of given return.
- Electrical engineering: VLSI layout.
- Medicine: reconstructing 3-D shape from biplane angiocardiogram.
- Operations research: optimal resource allocation.
- Physics: anti-ferromagnetic Potts model.
- Politics: Shapley-Shubik voting power.
- Pop culture: Minesweeper consistency.
- Statistics: optimal experimental design.
A given problem can be solved by many different algorithms (TMs).

- Which ones are useful in practice?

A working definition: (Jack Edmonds, 1962)

- Efficient: polynomial time for ALL inputs.
 - mergesort requires $N \log_2 N$ steps
- Inefficient: "exponential time" for SOME inputs.
 - brute force TSP takes $N! > 2^N$ steps

Broad and robust definition has led to explosion of useful algorithms for wide spectrum of problems.

Properties of Algorithms

Exponential Growth

Exponential growth dwarfs technological change.

- Suppose each electron in the universe had power of today's supercomputers . . .
- And each works for the life of the universe in an effort to solve TSP problem via brute force $N!$ algorithm.

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supercomputer instructions per second</td>
<td>10^{12}</td>
</tr>
<tr>
<td>Second per year</td>
<td>10^9</td>
</tr>
<tr>
<td>Age of universe in years †</td>
<td>10^{13}</td>
</tr>
<tr>
<td>Electrons in universe †</td>
<td>10^{79}</td>
</tr>
</tbody>
</table>

† Estimated

- Will not succeed for 1,000 city TSP!

$1000! >> 10^{1000} >> 10^{79} \ast 10^{13} \ast 10^9 \ast 10^{12}$

"Every year since 1950, the number of American children gunned down has doubled."

What do YOU think?

- $2^{50} = 1,125,899,906,842,624$
- Joel Best: worst ever social statistic.
 - in Damned lies and statistics: untangling numbers from the media, politicians, and activists

Properties of Problems

Which PROBLEMS will we be able to solve in practice?

- Those with efficient (polynomial-time) algorithms.

How can I tell if I am trying to solve such a problem?

- 2-COLOR: yes
- 3-COLOR: probably no
- 4-COLOR: yes

- No easy answer! Theory of "NP-completeness" helps.

Every planar map is 4 colorable.
P

Definition of P:
- Set of all decision problems solvable in polynomial time on a deterministic Turing machine.

MULTIPLE: Is the integer y a multiple of x?
- YES: $(x, y) = (17, 51)$.
- NO: $(x, y) = (17, 50)$.

RELPRIME: Are the integers x and y relatively prime?
- YES: $(x, y) = (34, 39)$.
- NO: $(x, y) = (34, 51)$.

Definition important because of Strong Church-Turing thesis.

Strong Church-Turing Thesis

Strong Church-Turing thesis:
- P is the set of all decision problems solvable in polynomial time on REAL computers.

Evidence supporting thesis:
- True for all physical computers.
- Can create deterministic TM that EFFICIENTLY simulates any existing digital computer.

Possible exception?
- Quantum computers – no conventional gates.

NP

EXP: set of all decision problems solvable in exponential time on a deterministic Turing machine.

NP: does NOT mean "not polynomial."

NP: set of all decision problems with efficient certification algorithm.
- Efficient: polynomial number of steps on deterministic TM.
- Certifier: check whether a proposed "solution" is correct.
 - proposed solution is called CERTIFICATE (a hint)
 - technical condition: certificate must be of polynomial-size

Certifiers and Certificates

COMPOSITE: Given integer s, is s composite?

Observation. s is composite \iff there exists an integer $1 < t < s$ such that s is a multiple of t.
- YES instance: $s = 437,669$.
 - certificate $t = 541$ or 809 (a factor)

Certifier: Is s a multiple of t?

Input s: 437,669
Certificate t: 541

YES

NO

s is a YES instance
no conclusion
Certifiers and Certificates

COMPOSITE: Given integer s, is s composite?

Observation. s is composite \iff there exists an integer $1 < t < s$ such that s is a multiple of t.
- YES instance: $s = 437,669$.
 - certificate $t = 541$ or 809 (a factor)
- NO instance: $s = 437,677$.
 - no certificate can fool verifier into saying YES

Conclusion: COMPOSITE \in NP.

Certifiers and Certificates

3-COLOR: Given planar map, can it be colored with 3 colors?

Certifier:
1. Check that s and t describe same map.
2. Count number of distinct colors in t.
3. Check all pairs of adjacent states.

YES
- s is a YES instance
- no conclusion

NO
- s is a YES instance
- no conclusion

3-COLOR \in NP.

Alternate Definition of NP

NP: set of decision problems with efficient certification algorithms.

NP: set of all decision problems solvable in polynomial time on a NONDETERMINISTIC Turing machine.
- Equivalent definition.
- Intuition: nondeterministic TM can guess and check all possible solutions in parallel.
- Real computer can simulate nondeterministic TM, but takes exponential time unless you get "lucky."

$P \subseteq NP \subseteq EXP$

The Main Question

Does $P = NP$? (Edmonds, 1962)
- Is the original DECISION problem as easy as CERTIFICATION?
- Does nondeterminism help you solve problems faster?

Most important open problem in computer science.
- If yes, staggering practical significance.
- Clay Foundation Millennium 1 million prize.
The Main Question

Does $P = NP$?
- Is the original DECISION problem as easy as CERTIFICATION?

If yes, then:
- Efficient algorithms for 3-COLOR, TSP, FACTOR.
- Cryptography is theoretically impossible (except for one-time pads) on conventional machines.
- Modern banking system will collapse.
- Harmonial bliss.

If no, then:
- Can't hope to write efficient algorithm for TSP.
 - see NP-completeness

NP-Complete

Definition of NP-complete:
- A problem in NP with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently.
- "Hardest computational problems" in NP.

EXP \(\cap \) NP \(\cap \) NP-complete \(\cap \) EXP

If $P \neq NP$

If $P = NP$

The Main Question

Does $P = NP$?
- Is the original DECISION problem as easy as CERTIFICATION?

Probably no, since:
- Thousands of researchers have spent four decades in search of polynomial algorithms for many fundamental NP problems without success.
- Consensus opinion: $P \neq NP$.

But maybe yes, since:
- No success in proving $P \neq NP$ either.

Note: FACTOR not known to be NP-complete.

Notorious complexity class.
- Only exponential algorithms known for these problems.
- Called intractable - unlikely that they can be solved given limited computing resources.
Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.

- For problems Y and X, we can often show: if Y can be solved efficiently, then so can X.
- In this case, we say X reduces to Y. (X is “easier” than Y).

Warmup: PRIMALITY reduces to FACTOR.

- Given an efficient algorithm for FACTOR(x, U), want to design an efficient algorithm for PRIMALITY(p).
 - Step 1: Compute FACTOR(p, p).
 - Step 2: If answer = YES, return NO; otherwise return YES.

- Original problem: Is p = 437,669 prime?

The World’s First NP-Complete Problem

SAT is NP-complete. (Cook-Levin, 1960s)

Idea of proof:

- Given problem X ∈ NP, by definition there exists nondeterministic TM M that solves X in polynomial time.
- Use Boolean variables to model which symbol occupies cell i at step t, location of read head at step t, state of finite control at step t, etc.
- Use logic gates to ensure machine makes legal moves, etc.
- SAT instance is satisfiable if and only if TM outputs YES.

Coping With NP-Completeness

Hope that worst case doesn’t occur.

- Complexity theory deals with worst case behavior. The instance(s) you want to solve may be “easy.”
 - TSP where all points are on a line or circle
 - 13,509 US city TSP problem solved

(Cook et. al., 1998)
Coping With NP-Completeness

Hope that worst case doesn’t occur.

Change the problem.

- Develop a heuristic, and hope it produces a good solution.
 - TSP assignment
 - Metropolis algorithm, simulating annealing, genetic algorithms
- Design an **approximation algorithm**: algorithm that is guaranteed to find a high-quality solution in polynomial time.
 - active area of research, but not always possible!
 - Euclidean TSP tour within 1% of optimal

Sanjeev Arora (1997)

Coping With NP-Completeness

Hope that worst case doesn’t occur.

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.

Summary

Many fundamental problems are NP-complete.

- TSP, CIRCUIT-SAT, 3-COLOR.

Theory says we probably won’t be able to design efficient algorithms for NP-complete problems.

- You will surely run into these problems in your scientific life.
- If you know about NP-completeness, you can identify them and avoid wasting time and energy.

A person can be at most two of the following three things:

- Honest.
- Intelligent.
- A politician.

If a problem is NP-complete, you can design an algorithm to do at most two of the following three things:

- Solve the problem to optimality.
- Solve the problem in polynomial time.
- Solve arbitrary instances of the problem.