Lecture T1: Pattern Matching

Introduction to Theoretical CS

Two fundamental questions.
- What can a computer do?
- What can a computer do with limited resources?

General approach.
- Don’t talk about specific machines or problems.
- Consider minimal abstract machines.
- Consider general classes of problems.

Why Learn Theory

In theory ...
- Deeper understanding of what is a computer and computing.
- Foundation of all modern computers.
- Pure science.
- Philosophical implications.

In practice ...
- Web search: theory of pattern matching.
- Sequential circuit: theory of finite state automata.
- Compilers: theory of context free grammar.
- Cryptography: theory of complexity.
- Data compression: theory of information.

Finite State Automaton

Simple machine with N states.
Finite State Automata

Simple machine with N states.
- Start in state 0.
- Read an input bit.
- Move to new state
 - depends on input bit and current state
- Stop when last bit read.
 - 'yes' if end in accept state(s)
 - 'no' otherwise

'Yes' also called accepted or recognized inputs from a language.

A Second Example

Consider the following two state FSA.

What bit strings does it accept?
- Yes: 0, 11110, 00000, 100100111011
- No: 1, 1111, 00, 1011100111011

C Code for FSA

```c
#include <stdio.h>
define STATES 4
define START_STATE 0
define ACCEPT_STATE 3

int main(void) {
  int i, state = START_STATE;
  int transition[STATES][2] = 
    { {2, 1}, {3, 2}, {2, 2}, {2, 1} };

  while (scanf("%1d", &i) != EOF)
    state = transition[state][i];

  if (state == ACCEPT_STATE)
    printf("Yes.\n");
  else
    printf("No.\n");
  return 0;
}
```

An Application: Bounce Filter

Bounce filter: remove isolated b's and g's in input.
- Input: b b g b b g b g g g g b b b b
- Output: w b b b b b g g g g g g b b b b
 (one-step delay)
An Application: Bounce Filter

Bounce filter: remove isolated b’s and g’s in input.
- Input: b b g b b b g b g g g b b b b
- Output: w b b b b b b b g g g g g g g g g g b b b b
(one-step delay)

State interpretations.
- W: start
- BB: at least two consecutive b’s.
- G: sequence of b’s followed by g.
- GG: at least two consecutive g’s.
- B: sequence of g’s followed by b.

Text Searching

Build an FSA that accepts all strings that contain ‘acat’ as a substring.
- tatgacatg
- acacatg

Start building:

State name represents largest prefix of “acat” that input currently matches.

Web Search Application

Web search engines build FSAs.

Standard Web search for: cos 126 pattern matching

Search engines have different methods for specifying patterns.
- Which one is most powerful?
- Theory of computation helps us address such issues.
Unix Pattern Matching Tool: egrep

General regular expressions pattern matching.
- Acts as filter.
- Sends lines from stdin to stdout that "match" argument string.

<table>
<thead>
<tr>
<th>Elementary Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>%egrep 'beth' classlist</td>
</tr>
<tr>
<td>03/Smythe/Elizabeth/6/esmythe 03/Bethke/Kristen/3/kbethke</td>
</tr>
<tr>
<td>% egrep '/3/' classlist</td>
</tr>
<tr>
<td>03/Marin/Anthony/3/amarin 03/Arellano/Belen/3/arellano ... 03/Weiss/Jacob/3/weiss</td>
</tr>
<tr>
<td>%egrep 'zeuglodon' mobydick.txt</td>
</tr>
<tr>
<td>rechristened the monster zeuglodon and in his</td>
</tr>
<tr>
<td>%egrep 'acat' human.data</td>
</tr>
<tr>
<td>gcaacgcacacaacatgcatttt</td>
</tr>
</tbody>
</table>

Crossword Puzzle or Scrabble Too Hard?

/usr/dict/words is a list of (25,143) words in dictionary.
/u/cs126/files/textfiles/wordlist.txt is a list of 234,936 words.

<table>
<thead>
<tr>
<th>More Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>% egrep 'hh' /usr/dict/words</td>
</tr>
<tr>
<td>beachhead highhanded withheld withhold</td>
</tr>
<tr>
<td>% egrep 'u.u.u' /usr/dict/words</td>
</tr>
<tr>
<td>cumulus</td>
</tr>
<tr>
<td>% egrep '..oo..oo' /usr/dict/words</td>
</tr>
<tr>
<td>bloodroot nincompoophood schoolbook schoolroom</td>
</tr>
</tbody>
</table>

Egrep Pattern Conventions

Conventions for **egrep**:
- c any non-special character matches itself
- . any single character
- r* zero or more occurrences of r
- r+ one or more occurrences of r
- r? zero or one occurrences of r
- (r) grouping
- r1|r2 logical OR
- [aeiou] any vowel
- [^ aeiou] any non-vowel
- ^ beginning of line
- $ end of line

Flags for **egrep**:
- egrep -v match all lines except those specified by pattern

Still More Examples

<table>
<thead>
<tr>
<th>Unix</th>
</tr>
</thead>
<tbody>
<tr>
<td>% egrep 'n(ie</td>
</tr>
<tr>
<td>neither</td>
</tr>
<tr>
<td>% egrep 'actg(atac)*gcta' human.data</td>
</tr>
<tr>
<td>ggt actg gcta ggac</td>
</tr>
<tr>
<td>% egrep 'actg(atac)*gcta' student.data</td>
</tr>
<tr>
<td>tatactg atacatacatac gcta ttac</td>
</tr>
<tr>
<td>% egrep '^y.(..)*y$' /usr/dict/words</td>
</tr>
<tr>
<td>yesterday</td>
</tr>
<tr>
<td>% egrep -v '[aeiou]' /usr/dict/words</td>
</tr>
<tr>
<td>rhythm syzygy</td>
</tr>
</tbody>
</table>
Specifying "pattern" for `egrep` can be complex.

```
[^aeiou]*a[^aeiou]*e[^aeiou]*i[^aeiou]*o[^aeiou]*u[^aeiou]*
```

Which aspects are essential?
- Unix `egrep` regular expressions are useful.
- But more complex than theoretical minimum.

Fundamental Questions: What Kinds of Patterns

What kinds of patterns can be specified by regular expressions?
(all but one of following)

<table>
<thead>
<tr>
<th>All bit strings that</th>
<th>Example</th>
<th>Regular Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin with 0 and end with 1.</td>
<td>0001011011</td>
<td>0(0</td>
</tr>
<tr>
<td>Equal number of 0’s and 1’s.</td>
<td>0111100010</td>
<td>not possible</td>
</tr>
<tr>
<td>Have no consecutive 1’s.</td>
<td>0100101001</td>
<td>(0</td>
</tr>
<tr>
<td>Has an odd number of 0’s.</td>
<td>0100101011</td>
<td>(10101*) (101*)</td>
</tr>
<tr>
<td>Has 011010 as a substring.</td>
<td>0001101000</td>
<td>0(1)*011010(0</td>
</tr>
</tbody>
</table>

```
Formal Languages

An ALPHABET is a finite set of symbols.
- Binary alphabet = \{0, 1\}
- Lower-case alphabet = \{a, b, c, d, \ldots, y, z\}
- Genetic alphabet = \{a, c, t, g\}

A STRING is a finite sequence of symbols in the alphabet.
- '0111011011' is a string in the binary alphabet.
- 'tigers' is a string in the lower-case alphabet.
- 'acctgaacta' is a string in the genetic alphabet.

A FORMAL LANGUAGE is an (unordered) set of strings in an alphabet.
- Can have infinitely many strings.
- Examples:
  - \{0, 010, 0110, 01110, 011110, \ldots\}
  - \{11, 1111, 111111, 11111111, \ldots\}

Formal Languages

Can cast any computation as a language recognition problem.
- Is \(x = 23,536,481,273\) a prime number?

FSA.
- Machine determines whether a string is in language.

Regular expression.
- Shorthand method for specifying a language.

\[ (1*01*01*)*(1*01*) \]

\[ \text{even # of } 0\text{'s} \quad \text{exactly one } 0 \]

Duality Between FSA's and RE's

Observation: for each FSA we create, we can find a regular expression that matches the same strings that the FSA accepts.

Is this always the case?

What about the OTHER way around?

Stay tuned: see Lecture T2.

Limitations of FSA

FSA are simple machines.
- N states \(\Rightarrow\) can't "remember" more than N things.
- Some languages require "remembering" more than N things.

No FSA can recognize the language of all bit strings with an equal number of 0's and 1's.

A warmup exercise:

If 01xyz accepted then so is 00001xyz
Limitations of FSA

No FSA can recognize the language of all bit strings with an equal number of 0’s and 1’s.

- Suppose an N-state FSA can recognize this language.
- Consider following input: 0000000011111111
  \[ N+1 \text{ 0’s} \quad N+1 \text{ 1’s} \]

- FSA must accept this string.
- Some state x is revisited during first N+1 0’s since only N states.
  \[
  \begin{array}{c}
  0000000011111111 \\
  x \\
  \end{array}
  \]
- Machine would accept same string without intervening 0’s.
  \[
  \begin{array}{c}
  000011111111 \\
  \end{array}
  \]
- This string doesn’t have an equal number of 0’s and 1’s.

Looking Ahead

Today.
- Defined a simple abstract machine = FSA.
- Capable of pattern matching.
- Incapable of "counting."
- Need to consider more powerful machines.

Future lectures.
- Define an abstract machine.
- Understand how it works and what it can do.
- Find things it can’t do.
- Define a more powerful machine.
- Repeat until we run out of problems or machines.

Lecture T1: Supplemental Notes

C Code for FSA

```c
#include <stdio.h>
int main(void) {
 int c, state = 0;
 while ((c = getchar()) != EOF) {
 if (state == 0 && c == '0') state = 2;
 else if (state == 0 && c == '1') state = 1;
 else if (state == 1 && c == '0') state = 3;
 else if (state == 1 && c == '1') state = 1;
 else if (state == 2 && c == '0') state = 2;
 else if (state == 2 && c == '1') state = 2;
 else if (state == 3 && c == '0') state = 2;
 else if (state == 3 && c == '1') state = 1;
 }
 if (state == 3)
 printf("Yes.\n");
 else
 printf("No.\n");
 return 0;
}
```

Hmm. Which will we run out of first?
**A Fourth Example**

**FSA to decide if integer (represented in binary) is divisible by 3?**

What bit strings does it accept?
- **Yes:** 11 (3_{10}), 110 (6_{10}), 1100 (12_{10}), 1111 (15_{10}), 10011 (18_{10}), integers divisible by 3.
- **No:** 1 (1_{10}), 10 (2_{10}), 100 (4_{10}), 101 (5_{10}), 111 (7_{10}), integers not divisible by 3.

**How does it work?**
- State 0: input so far is divisible by 3.
- State 1: input has remainder 1 upon division by 3.
- State 2: input has remainder 2 upon division by 3.
- Transition example.
  - Input 1100 (12_{10}) ends in state 0.
  - If next bit is 0 then stay in state 0: 11000 (24_{10}).
  - Adding 0 to last bit is same as multiplying number by 2. Remains divisible by 3.

---

**Regular Expressions**

**Rules for creating regular expressions (RE's):**
- 0 or 1 or \(\varepsilon\) symbols
- (a) grouping
- ab concatenation
- a + b logical OR
- a* closure (0 or more replications)

Use + instead of | where a and b are regular expressions.

**Examples:**
- \((10)^*\) \(\varepsilon, 10, 1010, 101010, \ldots\)
- \(0(0 + 1)^*0\) \(00, 000, 010, 0000, 0110, \ldots\)
- \((1*01*01*01*)^*\) \(\varepsilon, 000, 00000, 11101110101111, \ldots\)