Lecture P6: Recursion

Overview

What is recursion?
- When one function calls ITSELF directly or indirectly.

Why learn recursion?
- New mode of thinking.
- Powerful programming tool.
- Many computations are naturally self-referential.
 - a Unix directory contains files and other directories
 - Euclid’s gcd algorithm
 - linked lists and trees
 - GNU = GNU’s Not Unix

Overview

How does recursion work?

How does a function call work?
- A function lives in a local environment:
 - values of local variables
 - which statement the computer is currently executing

- When \(f() \) calls \(g() \), the system
 - saves local environment of \(f \)
 - sets value of parameters in \(g \)
 - jumps to first instruction of \(g \), and executes that function
 - returns from \(g \), passing return value to \(f \)
 - restores local environment of \(f \)
 - resumes execution in \(f \) just after the function call to \(g \)

Overview

How does the compiler implement functions?

Return from functions in last-in first-out (LIFO) order.
- FUNCTION CALL: push local environment onto stack.
- RETURN: pop from stack and restore local environment.

Implementing Functions
A Simple Example

Goal: function to compute \(\text{sum}(n) = 0 + 1 + 2 + \ldots + n-1 + n\).

- Simple ITERATIVE solution.

```
int sum(int n) {
    int i, s = 0;
    for (i = 0; i <= n; i++)
        s += i;
    return s;
}
```

```
int sum(int n) {
    int s = n;
    while (n > 0) {
        n--;
        s += n;
    }
    return s;
}
```

Note that changing the variable \(n\) in \(\text{sum}\) does not change the value in the calling function.

A Simple Example

Goal: function to compute \(\text{sum}(n) = 0 + 1 + 2 + \ldots + n-1 + n\).

- Simple ITERATIVE solution.
- Can also express using SELF-REFERENCE.

```
int sum(int n) {
    if (n == 0)
        return 0;
    return n + sum(n-1);
}
```

```
int sum(int n) {
    if (n == 0)
        return 0;
    return n + sum(n-1);
}
```

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.
- Won’t "bottom-out" of recursion without a base case.
- Analog of infinite loops with for and while loops.

```
void mystery1(int n) {
    printf("%d\n", n);
    if (n % 2 == 0)
        mystery1(n/2);
    else
        mystery1(3*n + 1);
}
```

This is just a stupid example to illustrate recursion.
- Don’t even need iteration, let alone recursion.
- \(0 + 1 + 2 + \ldots + n = n(n+1)/2\)

```
int sum(int n) {
    return (n * (n+1)) / 2;
}
```

```
int sum(int n) {
    if (n == 0)
        return 0;
    return n + sum(n-1);
}
```
A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.

REDUCTION STEP makes input converge to base case.

- Unknown whether program terminates for all positive integers n.
- Stay tuned for Halting Problem in Lecture T4.

```c
void mystery2(int n) {
    printf("%d\n", n);
    if (n <= 1) return;
    else if (n % 2 == 0) mystery2(n/2);
    else mystery2(3*n + 1);
}
```

Greatest Common Divisor

Find largest integer \(d\) that evenly divides into \(m\) and \(n\).

\[
gcd(m, n) = \begin{cases}
 m & \text{if } n = 0 \\
 gcd(n, m \mod n) & \text{otherwise}
\end{cases}
\]

- \(gcd(1440, 408) = gcd(408, 216) = gcd(192, 24) = 24.\)

Euclid (300 BC)

\[
1440 = 2^5 \times 3^2 \times 5^1 \\
408 = 2^3 \times 3^1 \times 17^1
\]

Greatest Common Divisor

Find largest integer \(d\) that evenly divides into \(m\) and \(n\).

```c
int gcd(int m, int n) {
    if (n == 0) return m;
    else return gcd(n, m % n);
}
```

Number Conversion

To print binary representation of integer N:

- Stop if \(N = 0\).
- Write '1' if \(N\) is odd; '0' if \(N\) is even.
- Move pencil one position to left.
- Print binary representation of \(N / 2\). (integer division)

```
43            1
21           11
10          011
 5        1011
 2    01011
 1  101011
 0
```

Check: \(43 = 1 \times 2^5 + 0 \times 1^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 32 + 0 + 8 + 0 + 2 + 1\)

Easiest way to compute by hand.

- Corresponds directly with a recursive program.
Recursive Number Conversion

Computer naturally prints from left to right.
- So we need to first convert \(N / 2 \).
- Then write ‘0’ or ‘1’.

```c
void convert(int N) {
    if (N == 0)
        return;
    convert(N / 2);
    printf("%d", N % 2);
}
```

Convert to any base \(b \leq 10 \).
- Exercise: extend to handle hexadecimal (base 16).

\[N = 2 \cdot (N / 2) + (N \mod 2) \]

Possible Pitfalls With Recursion

Is recursion fast?

Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

It takes a really long time to compute \(F(40) \).

\[F_n = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases} \]

```
bad Fibonacci function
int F(int n) {
    if (n == 0 || n == 1)
        return n;
    else
        return F(n-1) + F(n-2);
}
```

F(39) is computed once.
F(38) is computed 2 times.
F(37) is computed 3 times.
F(36) is computed 5 times.
F(35) is computed 8 times.
...
F(0) is computed 165,580,141 times.

331,160,281 function calls for \(F(40) \).

```
bad Fibonacci function
int F(int n) {
    if (n == 0 || n == 1)
        return n;
    else
        return F(n-1) + F(n-2);
}
```

bad Fibonacci function

\[F(n) = \frac{\phi^n - (1 - \phi)^n}{\sqrt{5}} \]
\[\phi = \frac{1 + \sqrt{5}}{2} = 1.61803398875 \]
Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute intermediate results.

- **DYNAMIC PROGRAMMING** solution: save away intermediate results in a table.

Fibonacci using dynamic programming

```c
int knownF[1000] = {0};

int F(int n) {
    if (knownF[n] != 0)
        return knownF[n];
    else if (n == 0 || n == 1)
        return n;
    else
        knownF[n] = F(n-1) + F(n-2);
    return knownF[n];
}
```

This uses only 2n recursive calls to compute F(n).

Recursion vs. Iteration

Fact 1. Any recursive function can be written with iteration.
- Compiler implements recursion with stack.
- Can avoid recursion by explicitly maintaining a stack.

Fact 2. Any iterative function can be written with recursion.

Should I use iteration or recursion?
- Ease and clarity of implementation.
- Time/space efficiency.

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

Start

Edouard Lucas (1883)

Towers of Hanoi: Recursive Solution

Move N-1 smallest discs to pole B.

Move largest disc to pole C.

Move N-1 smallest discs to pole C.
Towers of Hanoi: Recursive Solution

```c
#include <stdio.h>

void hanoi(int n, char from, char to) {
    char temp;
    if (n == 0)
        return;
    temp = getOtherPeg(from, to);
    hanoi(n-1, from, temp);
    printf("Move disc %d from %c to %c.
", n, from, to);
    hanoi(n-1, temp, to);
}

int main(void) {
    hanoi(4, 'A', 'C');
    return 0;
}
```

Solve 4 disc problem

```bash
% gcc hanoi.c
% a.out
Move disc 1 from A to B.
Move disc 2 from A to C.
Move disc 1 from B to C.
Move disc 3 from A to B.
Move disc 1 from C to A.
Move disc 2 from C to B.
Move disc 1 from A to B.
Move disc 4 from A to C.
Move disc 1 from B to C.
Move disc 2 from B to A.
Move disc 1 from C to A.
Move disc 3 from C to B.
Move disc 1 from A to B.
Move disc 2 from A to C.
Move disc 1 from B to C.
```

Unix

```c
char getOtherPeg(char x, char y) {
    if (x == 'A' && y == 'B') || (x == 'B' && y == 'A')
        return 'C';
    if (x == 'A' && y == 'C') || (x == 'C' && y == 'A')
        return 'B';
    return 'A';
}
```

Towers of Hanoi

Is world going to end (according to legend)?
- Monks have to solve problem with N = 40 discs.
- Computer algorithm should help.

Better understanding of recursive algorithm supplies non-recursive solution!
- Alternate between two moves:
 - Move smallest disc 1 peg to right (left) if N is even (odd).
 - Make only legal move not involving smallest disc.
- See Sedgewick 5.2.

Summary

How does recursion work?
- Just like any other function call.

How does a function call work?
- Save away local environment using a stack.

Trace the executing of a recursive program.
- Use pictures.

Write simple recursive programs.
- Base case.
- Reduction step.
Given a function, find a root, i.e., a value \(x \) such that \(f(x) = 0 \).

- \(f(x) = x^2 - x - 1 \)
- \(\phi = \frac{1 + \sqrt{5}}{2} = 1.61803... \) is a root.

Assume \(f \) is continuous and \(l, r \) satisfy \(f(l) < 0.0 \) and \(f(r) > 0.0 \).

Root Finding

- **Reduction step:**
 - Maintain interval \([l, r]\) such that \(f(l) < 0, f(r) > 0 \).
 - Compute midpoint \(m = (l + r) / 2 \).
 - If \(f(m) < 0 \) then run algorithm recursively on interval \([m, r]\).
 - If \(f(m) > 0 \) then run algorithm recursively on interval \([l, m]\).

- **Progress achieved at each step.**
 - Size of interval is cut in half.

- **Base case (when to stop):**
 - Ideally when \(0.0 == f(m) \), but this may never happen!
 - root may be irrational
 - machine precision issues
 - Stop when \(r - l \) is sufficiently small.
 - guarantees \(m \) is sufficiently close to root

```c
#define EPSILON 0.000001

double f (double x) {
    return x*x - x - 1;
}

double bisect (double left, double right) {
    double mid = (left + right) / 2;
    if (right - left < EPSILON || 0.0 == f(mid))
        return mid;
    if (f(mid) < 0.0)
        return bisect(mid, right);
    return bisect(left, mid);
}
```

recursive bisection function

```c
#define EPSILON 0.000001

double f (double x) {
    return x*x - x - 1;
}

double bisect (double left, double right) {
    double mid = (left + right) / 2;
    if (right - left < EPSILON || 0.0 == f(mid))
        return mid;
    if (f(mid) < 0.0)
        return bisect(mid, right);
    return bisect(left, mid);
}
```
void HanoiRight (int N) {
 if (0 == N)
 return;
 HanoiLeft (N-1);
 ShiftRight (N);
 HanoiLeft (N-1);
}

void HanoiLeft (int N) {
 if (0 == N)
 return;
 HanoiRight (N-1);
 ShiftLeft (N);
 HanoiRight (N-1);
}

void Move (int N) {
 printf("Shift disc %d one \n", N);
}

int main (void) {
 HanoiLeft (4);
 return 0;
}