Parse Trees

- We have been looking at concrete parse trees.
 - Each internal node labeled with non-terminal.
 - Children labeled with symbols in RHS of production.
- Concrete parse trees inconvenient to use! Tree is cluttered with tokens containing no additional information.
 - Punctuation needed to specify structure when writing code, but
 - Tree structure itself cleanly describes program structure.

Parse Tree Example

\[
\begin{align*}
P & \rightarrow (S) \\
S & \rightarrow S ; S \\
S & \rightarrow ID := E \\
E & \rightarrow ID \\
E & \rightarrow NUM \\
E & \rightarrow E * E \\
E & \rightarrow E + E \\
E & \rightarrow E / E \\
\end{align*}
\]

\[
\begin{align*}
(& \quad a := 4 \; ; \; b := 5)
\end{align*}
\]

\[
\text{Type checker does not need "(" or ")" or ","}
\]
Parse Tree Example

Solution: generate *abstract parse tree* (abstract syntax tree) - similar to concrete parse tree, except redundant punctuation tokens left out.

```
CompoundStmt
  AssignStmt
    ID("a") NUM(4)
  AssignStmt
    ID("b") NUM(4)
```

Semantic Analysis: Symbol Tables

- Semantic Analysis Phase:
 - Type check AST to make sure each expression has correct type
 - Translate AST into IR trees
- Main data structure used by semantic analysis: symbol table
 - Contains entries mapping identifiers to their bindings (e.g. type)
 - As new type, variable, function declarations encountered, symbol table augmented with entries mapping identifiers to bindings.
 - When identifier subsequently used, symbol table consulted to find info about identifier.
 - When identifier goes out of scope, entries are removed.

Symbol Table Example

```
function f(b:int, c:int) =
  (print_int(b+c);
    let
      var j := b
      var a := "x"
    in
      print(a)
      print(j)
    end
  print_int(a)
)
```

```
s_0 = {a \rightarrow \text{int}}

\text{let} \quad
s_1 = {b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}}

\begin{align*}
\text{var } j &:= b \\
\text{var } a &:= "x"
\end{align*}

\begin{align*}
s_2 &= {j \rightarrow \text{int}, b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}} \\
s_2 &= {a \rightarrow \text{string}, j \rightarrow \text{int}, b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}}
\end{align*}

\begin{align*}
s_3 &= {b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}} \\
s_4 &= {b \rightarrow \text{int}, c \rightarrow \text{int}, a \rightarrow \text{int}}
\end{align*}
```

Symbol Table Implementation

- Imperative Style: (side effects)
 - Global symbol table
 - When beginning-of-scope entered, entries added to table using side-effects. (old table destroyed)
 - When end-of-scope reached, auxiliary info used to remove previous additions. (old table reconstructed)
- Functional Style: (no side effects)
 - When beginning-of-scope entered, *new* environment created by adding to old one, but old table remains intact.
 - When end-of-scope reached, retrieve old table.
Imperative Symbol Tables

Symbol tables must permit fast lookup of identifiers.

- **Hash Tables** - an array of buckets
- **Bucket** - linked list of entries (each entry maps identifier to binding)

<table>
<thead>
<tr>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>...</th>
<th>(n-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \sim \text{int})</td>
<td>(c \sim \text{string})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b \sim \text{int})</td>
<td>(d \sim \text{int})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Suppose we wish to lookup entry for id \(i \) in symbol table:
 1. Apply **hash function** to key \(i \) to get array element \(j \in [0, n-1] \).
 2. Traverse bucket in \(\text{table}[j] \) in order to find binding \(b \).

Functional Symbol Tables

Better method: use **binary search trees (BSTs)**.

- Functional additions easy.
- Need “less than” ordering to build tree.
 - Each node contains mapping from identifier (key) to binding.
 - Use string comparison for “less than” ordering.
 - For all nodes \(n \in L \), \(\text{key}(n) < \text{key}(l) \)
 - For all nodes \(n \in R \), \(\text{key}(n) \geq \text{key}(l) \)

Functional Symbol Table Example

Lookup:

- **Hash tables** not efficient for functional symbol tables.
 - Insert a \(\sim \text{string} \Rightarrow \text{copy array, share buckets:} \)

```
Old Symbol Table Array

New Symbol Table Array
```

Not feasible to copy array each time entry added to table.
Insert:

insert $z \leftarrow \text{int}$, create node z, copy all ancestors of z: