The Design of C:
A Rational Reconstruction

Goals of this Lecture

- Help you learn about:
 - The decisions that were available to the designers of C
 - The decisions that were made by the designers of C
 … and thereby…
 - C
- Why?
 - Learning the design rationale of the C language provides a richer understanding of C itself
 … and might be more interesting than simply learning the language itself
 - A power programmer knows both the programming language and its design rationale
- But first a (mostly) review of bits and numbers…
Number Systems

Why Bits (Binary Digits)?

- Computers are built using digital circuits
 - Inputs and outputs can have only two values
 - True (high voltage) or false (low voltage)
 - Represented as 1 and 0

- Can represent many kinds of information
 - Boolean (true or false)
 - Numbers (23, 79, ...)
 - Characters (‘a’, ‘z’, ...)
 - Pixels, sounds
 - Internet addresses

- Can manipulate in many ways
 - Read and write
 - Logical operations
 - Arithmetic
But Really, Why Bits?

- **Speed**
 - Some things faster if you know what to do
 - Sometimes the compiler can do it, but not always

- **Control**
 - Knowing what you can do gives you an edge
 - A small edge might provide large gains

- **Example: Web Indexing (in-memory)**
 - Open source: 70 bytes/object
 - Commercial: 24 bytes/object
 - Research: 11 bits/object

Base 10 and Base 2

- **Decimal (base 10)**
 - Each digit represents a power of 10
 - \(4173 = 4 \times 10^3 + 1 \times 10^2 + 7 \times 10^1 + 3 \times 10^0 \)

- **Binary (base 2)**
 - Each bit represents a power of 2
 - \(10110 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 22 \)

Decimal to binary conversion:
Divide repeatedly by 2 and keep remainders

\[
\begin{align*}
12/2 &= 6 \quad R = 0 \\
6/2 &= 3 \quad R = 0 \\
3/2 &= 1 \quad R = 1 \\
1/2 &= 0 \quad R = 1 \\
\text{Result} &= 1100
\end{align*}
\]
Writing Bits is Tedious for People

- Octal (base 8) – easy to write using a 10-key keypad
 - Digits 0, 1, …, 7
- Hexadecimal (base 16) – easier to manipulate
 - Digits 0, 1, …, 9, A, B, C, D, E, F

<table>
<thead>
<tr>
<th>Binary</th>
<th>Hex</th>
<th>Octal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>A</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>B</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>C</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>D</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>E</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>F</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

Thus the 16-bit binary number 1011 0010 1010 1001 converted to hex is B2A9.

Representing Colors: RGB

- Three primary colors
 - Red
 - Green
 - Blue
- Intensity
 - 8-bit number for each color (e.g., two hex digits)
 - So, 24 bits to specify a color
- In HTML, e.g. course “Schedule” Web page
 - Red: De-Comment Assignment Due
 - Blue: Reading Period
- Same thing in digital cameras
 - Each (processed) pixel is a mixture of red, green, and blue
Finite Representation of Integers

- Fixed number of bits in memory
 - Usually 8, 16, or 32 bits
 - (1, 2, or 4 bytes)

- Unsigned integer
 - No sign bit
 - Always 0 or a positive number
 - All arithmetic is modulo 2^n

- Examples of unsigned integers
 - 00000001 \rightarrow 1
 - 00001111 \rightarrow 15
 - 00010000 \rightarrow 16
 - 00100001 \rightarrow 33
 - 11111111 \rightarrow 255

Adding Two Integers

- From right to left, we add each pair of digits
- We write the sum, and add the carry to the next column
Binary Sums and Carries

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>Sum</th>
<th>a</th>
<th>b</th>
<th>Carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XOR ("exclusive OR")

\[
\begin{array}{cc}
0100 & 0101 \\
+ 0110 & 0111 \\
\hline
1010 & 1100
\end{array}
\]

\[
\begin{array}{c}
69 \\
103 \\
172
\end{array}
\]

Modulo Arithmetic

- Consider only numbers in a range
 - E.g., five-digit car odometer: 0, 1, ..., 99999
 - E.g., eight-bit numbers 0, 1, ..., 255
- Roll-over when you run out of space
 - E.g., car odometer goes from 99999 to 0, 1, ...
 - E.g., eight-bit number goes from 255 to 0, 1, ...
- Adding \(2^n\) doesn’t change the answer
 - For eight-bit number, n=8 and \(2^n=256\)
 - E.g., \((37 + 256) \mod 256\) is simply 37
- This can help us do subtraction...
 - Suppose you want to compute \(a - b\)
 - Note that this equals \(a + (256 - 1 - b) + 1\)
One’s and Two’s Complement

- One’s complement: flip every bit
 - E.g., \(b = 01000101 \) (i.e., 69 in decimal)
 - One’s complement is 10111010
 - That’s simply 255 - 69
- Subtracting from 11111111 is easy (no carry needed!)
 \[
 \begin{array}{c}
 1111 \ 1111 \\
 - 0100 \ 0101 \\
 \hline
 1011 \ 1010
 \end{array}
 \]
 \(b \)
 one’s complement

- Two’s complement
 - Add 1 to the one’s complement
 - E.g., \((255 - 69) + 1 \Rightarrow 1011 \ 1011\)

Putting it All Together

- Computing “\(a - b \)"
 - Same as “\(a + 256 - b \)”
 - Same as “\(a + (255 - b) + 1 \)”
 - Same as “\(a + \text{onesComplement}(b) + 1 \)”
 - Same as “\(a + \text{twosComplement}(b) \)”
- Example: 172 – 69
 - The original number 69: 0100 0101
 - One’s complement of 69: 1011 1010
 - Two’s complement of 69: 1011 1011
 - Add to the number 172: 1010 1100
 - The sum comes to: 0110 0111
 - Equals: 103 in decimal
Signed Integers

- **Sign-magnitude representation**
 - Use one bit to store the sign
 - Zero for positive number
 - One for negative number
 - Examples
 - E.g., 0010 1100 \(\rightarrow\) 44
 - E.g., 1010 1100 \(\rightarrow\) -44
 - Hard to do arithmetic this way, so it is rarely used

- **Complement representation**
 - One’s complement
 - Flip every bit
 - E.g., 1101 0011 \(\rightarrow\) -44
 - Two’s complement
 - Flip every bit, then add 1
 - E.g., 1101 0100 \(\rightarrow\) -44

Overflow: Running Out of Room

- **Adding two large integers together**
 - Sum might be too large to store in the number of bits available
 - What happens?

- **Unsigned integers**
 - All arithmetic is “modulo” arithmetic
 - Sum would just wrap around

- **Signed integers**
 - Can get nonsense values
 - Example with 16-bit integers
 - Sum: 10000+20000+30000
 - Result: -5536
Bitwise Operators: AND and OR

- **Bitwise AND (*)&

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Bitwise OR (||)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Mod on the cheap!
 - E.g., 53 % 16
 - ... is same as 53 & 15;

53

| 0 | 0 | 1 | 1 | 0 | 1 |

& 15

| 0 | 0 | 0 | 1 | 1 | 1 |

5

| 0 | 0 | 0 | 0 | 1 | 0 | 1 |

Bitwise Operators: Not and XOR

- **One’s complement (~)

 - Turns 0 to 1, and 1 to 0
 - E.g., set last three bits to 0
 - \(x = x & \sim 7; \)

- **XOR (^)

 - 0 if both bits are the same
 - 1 if the two bits are different

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Bitwise Operators: Shift Left/Right

- **Shift left (<<):** Multiply by powers of 2
 - Shift some # of bits to the left, filling the blanks with 0

0	0	1	1	0	1	0	1
1	1	0	1	0	0	0	0

- **Shift right (>>):** Divide by powers of 2
 - Shift some # of bits to the right
 - For unsigned integer, fill in blanks with 0
 - What about signed negative integers?
 - Can vary from one machine to another!

0	0	1	1	0	1	0	1
0	0	0	0	1	1	0	1

Example: Counting the 1’s

- **How many 1 bits in a number?**
 - E.g., how many 1 bits in the binary representation of 53?

0	0	1	1	0	1	0	1
 - Four 1 bits

- **How to count them?**
 - Look at one bit at a time
 - Check if that bit is a 1
 - Increment counter

- **How to look at one bit at a time?**
 - Look at the last bit: n & 1
 - Check if it is a 1: (n & 1) == 1, or simply (n & 1)
Counting the Number of ’1’ Bits

```c
#include <stdio.h>
#include <stdlib.h>
int main(void) {
    unsigned int n;
    unsigned int count;
    printf("Number: ");
    if (scanf("%u", &n) != 1) {
        fprintf(stderr, "Error: Expect unsigned int.\n");
        exit(EXIT_FAILURE);
    }
    for (count = 0; n > 0; n >>= 1)
        count += (n & 1);
    printf("Number of 1 bits: %u\n", count);
    return 0;
}
```

Number Systems Summary

- Computer represents everything in binary
 - Integers, floating-point numbers, characters, addresses, ...
 - Pixels, sounds, colors, etc.
- Binary arithmetic through logic operations
 - Sum (XOR) and Carry (AND)
 - Two’s complement for subtraction
- Bitwise operators
 - AND, OR, NOT, and XOR
 - Shift left and shift right
 - Useful for efficient and concise code, though sometimes cryptic
The Main Event

The Design of C

Goals of C

Designers wanted C to support:
- Systems programming
 - Development of Unix OS
 - Development of Unix programming tools

But also:
- Applications programming
 - Development of financial, scientific, etc. applications

Systems programming was the primary intended use
The Goals of C (cont.)

The designers of wanted C to be:
 • Low-level
 • Close to assembly/machine language
 • Close to hardware

But also:
 • Portable
 • Yield systems software that is easy to port to differing hardware

The Goals of C (cont.)

The designers wanted C to be:
 • Easy for people to handle
 • Easy to understand
 • Expressive
 • High (functionality/sourceCodeSize) ratio

But also:
 • Easy for computers to handle
 • Easy/fast to compile
 • Yield efficient machine language code

Commonality:
 • Small/simple
Design Decisions

In light of those goals…

• What design decisions did the designers of C have?
• What design decisions did they make?

Consider programming language features, from simple to complex…

Feature 1: Data Types

• Previously in this lecture:
 • Bits can be combined into bytes
 • Our interpretation of a collection of bytes gives it meaning
 • A signed integer, an unsigned integer, a RGB color, etc.

• A data type is a well-defined interpretation of a collection of bytes (or even bits in C)

• A high-level programming language should provide primitive data types
 • Facilitates abstraction
 • Facilitates manipulation via associated well-defined operators
 • Enables compiler to check for mixed types, inappropriate use of types, etc.
Primitive Data Types

• Issue: What primitive data types should C provide?

• Thought process
 • C should handle:
 • Integers
 • Characters
 • Character strings
 • Logical (alias Boolean) data
 • Floating-point numbers
 • C should be small/simple

• Decisions
 • Provide integer, character, and floating-point data types
 • Do not provide a character string data type (More on that later)
 • Do not provide a logical data type (More on that later)

Integer Data Types

• Issue: What integer data types should C provide?

• Thought process
 • For flexibility, should provide integer data types of various sizes
 • For portability at application level, should specify size of each data type
 • For portability at systems level, should define integral data types in terms of natural word size of computer
 • Primary use will be systems programming
Integer Data Types (cont.)

- Decisions
 - Provide three integer data types: short, int, and long
 - Do not specify sizes; instead:
 - int is natural word size
 - 2 <= bytes in short <= bytes in int <= bytes in long

- Incidentally, on hats using gcc217
 - Natural word size: 4 bytes
 - short: 2 bytes
 - int: 4 bytes
 - long: 4 bytes

Integer Constants

- Issue: How should C represent integer constants?

- Thought process
 - People naturally use decimal
 - Systems programmers often use binary, octal, hexadecimal

- Decisions
 - Use decimal notation as default
 - Use "0" prefix to indicate octal notation
 - Use "0x" prefix to indicate hexadecimal notation
 - Do not allow binary notation; too verbose, error prone
 - Use "L" suffix to indicate long constant
 - Do not use a suffix to indicate short constant; instead must use cast

- Examples
 - int: 123, -123, 0173, 0x7B
 - long: 123L, -123L, 0173L, 0x7BL
 - short: (short)123, (short)-123, (short)0173, (short)0x7B

Was that a good decision?

Why?
Unsigned Integer Data Types

- Issue: Should C have both signed and unsigned integer data types?
- Thought process
 - Must represent positive and negative integers
 - Signed types are essential
 - Unsigned data can be twice as large as signed data
 - Unsigned data could be useful
 - Unsigned data are good for bit-level operations
 - Bit-level operations are common in systems programming
 - Implementing both signed and unsigned data types is complex
 - Must define behavior when an expression involves both

Unsigned Integer Data Types (cont.)

- Decisions
 - Provide unsigned integer types: `unsigned short`, `unsigned int`, and `unsigned long`
 - Conversion rules in mixed-type expressions are complex
 - Generally, mixing signed and unsigned converts signed to unsigned
 - See King book Section 7.4 for details

Do you see any potential problems?

Was providing unsigned types a good decision?

What decision did the designers of Java make?
Unsigned Integer Constants

- Issue: How should C represent unsigned integer constants?

- Thought process
 - “L” suffix distinguishes long from int; also could use a suffix to distinguish signed from unsigned
 - Octal or hexadecimal probably are used with bit-level operators

- Decisions
 - Default is signed
 - Use "U" suffix to indicate unsigned
 - Integers expressed in octal or hexadecimal automatically are unsigned

- Examples
 - unsigned int: 123U, 0173, 0x7B
 - unsigned long: 123UL, 0173L, 0x7BL
 - unsigned short: (short)123U, (short)0173, (short)0x7B

To be continued…