Finding near-duplicate documents

Duplicate versus near duplicate documents

- Duplicate = identical?
 - What does identical mean?

Duplicate versus near duplicate documents

- Duplicate = identical?
- Near duplicate: small structural differences
 - not just content similarity
- define “small”
 - date change?
 - small edits?
 - metadata change?
 - other?

Applications

- creating collection
 - indexing
- Crawling network
- Returning query results
 - cluster near duplicates; return 1
- Plagiarism

Framework

- Algorithm to assign quantitative degree of similarity between documents
- Issues
 - What is basic token for documents?
 - character
 - word/term
 - What is threshold for “near duplicate”?
 - What are computational costs?

Classic document comparison

- Edit distance
 - count deletions, additions, substitutions to convert Doc$_1$ into Doc$_2$
 - can each action can have different cost
 - applications
 - UNIX “diff”
 - similarity of genetic sequences
- Edit distance algorithm
 - dynamic programming
 - time $O(m^*n)$ for strings length m and n
Edit distance for collections

- token = word
- compare other applications
- Cost is \(O(\sum_i |\text{Doc}_i| |\text{Doc}_j|) \)
- Right sense of similarity?

Addressing computation cost

A general paradigm to find duplicates in N docs:
1. Define function \(f \) capturing contents of each document in one number
 - "Hash function", "signature", "fingerprint"
2. Create \(<f(\text{doc}_i), \text{ID of doc}_i> \) pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same \(f \) value or \(f \) values within a small threshold

Compare: computing a similarity score on pairs of documents

Optimistic cost

A general paradigm to find duplicates in N docs:
1. Define function \(f \) capturing contents of each document in one number
 - \(O(|\text{doc}|) \)
 - "Hash function", "signature", "fingerprint"
2. Create \(<f(\text{doc}_i), \text{ID of doc}_i> \) pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same \(f \) value or \(f \) values within a small threshold
 - \(O(N \log N) \)

Compare: computing a similarity score on pairs of documents

General paradigm: details

1. Define function \(f \) capturing contents of each document in one number
 - "Hash function", "signature", "fingerprint"
2. Create \(<f(\text{doc}_i), \text{ID of doc}_i> \) pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same \(f \) value or \(f \) values within a small threshold
 - recognize exact duplicates:
 - threshold = 0
 - examine documents to verify duplicates
 - recognize near-duplicates
 - Problem with "small threshold"?

“Syntactic clustering”

We will look at this one example:

- "syntactic similarity" versus semantic
 - Sequences of words
- Finding near duplicates
- \(\text{Doc} = \) sequence of words
 - Word = Token
- Uses sampling
- Similarity based on shingles
- Does compare documents
Shingles

- A w-shingle is a contiguous subsequence of w words
- The w-shingling of doc D, S(D, w) is the set of unique w-shingles of D

Similarity of docs with shingles

- For fixed w, resemblance of docs A and B:
 \[r(A, B) = \frac{|S(A) \cap S(B)|}{|S(A) \cup S(B)|} \]
 Jaccard coefficient
- For fixed w, containment of doc A in doc B:
 \[C(A, B) = \frac{|S(A) \cap S(B)|}{|S(A)|} \]
- For fixed w, resemblance distance between docs A and B:
 \[D(A, B) = 1 - r(A, B) \]
 Is a metric (triangle inequality)

Note we are now comparing documents!

Example

A: “a rose is red a rose is white”
4-shingles:
- “a rose is red”
- “rose is red a”
- “is red a rose”
- “red a rose is”
- “a rose is white”

B: “a rose is white a rose is red”
4-shingles:
- “a rose is white”
- “rose is white a”
- “is white a rose”
- “white a rose is”
- “a rose is red”

\[r(A, B) = 0.25 \]

Sample of shingles

Want to estimate \(r \) and/or \(c \)
Do this by calculating approximation on a sample of shingles for fixed w

- 1-to-1 map each shingle to integer in fixed, large range \(R \)
 - 64-bit hash, \(R=[0, 2^{64}] \)
- Let \(\Pi \) be a random permutation from \(R \) to \(R \)
- For any \(S(D) \) define:
 \[\psi(D) = \text{set of integer hash values corresponding to shingles in } S(D) \]
 \[\Pi(D) = \text{set of permuted values in } \psi(D) \]
 \[\chi(\Pi, D) = \text{smallest integer in } \Pi(D) \]

Sketch of shingles

- Let \(\Pi_1, \ldots, \Pi_m \) be m random permutations \(R \to R \)
 - text: \(m=20 \)

The sketch of doc D for \(\Pi_1, \ldots, \Pi_m \) is
\[\psi(D) = (\chi(\Pi_i, D) | 1 \leq i \leq m) \]

doc \(\to \) set shingles \(\to \) set integers
\(\to \) m sets permuted integers
\(\to \) m smallest integers: one per permutation
Sketch is a sampling

Approximation of resemblance

Theorem:
For random permutation \(\Pi \):
\[r(A, B) = P (\chi(\Pi, A) = \chi(\Pi, B)) \]

Estimate \(P (\chi(\Pi, A) = \chi(\Pi, B)) \) as
\[\frac{|\psi(A) \cap \psi(B)|}{m} \]
recall \(m \) is \# permutations
Algorithm used (text's version)

1. Calculate sketch $\psi(D_i)$ for every doc D_i
2. Calculate $|\psi(D_i) \cap \psi(D_j)| = c_{ij}$ for each non-empty intersection:
 i. Produce list of $<\text{shingle value}, \text{docID}>$ pairs for all shingle values $x(T_k, D_i)$ in the sketch for each doc.
 ii. Sort the list by shingle value
 iii. Produce all triples $<\text{ID}(D_i), \text{ID}(D_j), c_{ij}>$ for which $c_{ij}>0$
 This not linear-time for the list of docs for one shingle value
3. Build clusters of similar/almost identical docs
 Degree of similarity depends on threshold ...

Clustering

1. Define docs to be similar if approximate resemblance greater than a predetermined threshold t:
 $$\frac{c_{ij}}{m} > t$$
2. Build graph of docs:
 - edge between each pair of similar docs
3. The clusters of similar docs are the connected components in the graph
 - what type clustering?

Revisit the original paradigm

A general paradigm to find duplicates in N docs:
1. Define function f capturing contents of each document in one number $O(|\text{doc}|)$
 - “Hash function”, “signature”, “fingerprint”
2. Create $<f(D_i), \text{ID of doc}>$ pairs $O(\Sigma_{i=1..N}(|\text{doc}|))$
3. Sort the pairs $O(N \log N)$
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold $O(N)$

Compare: computing a similarity score on pairs of documents

Paradigm?

- Does compare docs, so not same as paradigm we started with, but uses ideas
- Contents of doc captured by sketch – a set of shingle values
- Similarity of docs scored by count of common shingle values for docs
- Don’t look at all doc pairs, look at all doc pairs that share a shingle value
- Uses clustering by similarity threshold

Algorithm cost

1. Calculate sketch $\psi(D)$ for every D, $O(\Sigma |D_i|)$
2. Calculate $|\psi(D_i) \cap \psi(D_j)| = c_{ij}$ for each non-empty intersection:
 i. Produce list of $<\text{shingle value, docID}>$ pairs for all shingle values $x(T_k, D_i)$ in the sketch for each doc.
 ii. Sort the list by shingle value $O(m \log (mN))$
 iii. Produce all triples $<\text{ID}(D_i), \text{ID}(D_j), c_{ij}>$ for which $c_{ij}>0$
 This not linear-time for the list of docs for one shingle value $O(mN)$
3. Build clusters of similar/almost identical docs
 Degree of similarity depends on threshold ...
More efficient: supershingles

“meta-sketch”
1. Sort shingle values of a sketch
2. Compute the shingling of the sequence of shingle values
 - Each original shingle value now a token
 - Gives “supershingles”
3. “meta-sketch” = set of supershingles

One supershingle in common \Rightarrow sequences of shingles in common
Documents with \geq 1 supershingle in common \Rightarrow similar

- Each supershingle for a doc. characterizes the doc
- Sort <supershingle, docID> pairs: docs sharing a supershingle are similar \Rightarrow our first paradigm

Pros and Cons of Supershingles

+ Faster
- Problems with small documents – not enough shingles
- Can’t do containment
 - Shingles of superset that are not in subset break up sequence of shingle values

Variations of shingling

- Can define different ways to do sampling
- Studies in original paper used modular arithmetic
 - sketch formed by taking shingle hash values mod some selected \(m \)

Original experiments (1996) by Broder et. al.

- 30 million HTML and text docs (150GB) from Web crawl
- 10-word shingles
- 600 million shingles (3GB)
- 40-bit shingle “fingerprints”
- Sketch using 4% shingles (variation of alg. we’ve seen)
- Used count of shingles for similarity
- Using threshold \(t = 50\% \), found
 - 3.6 million clusters of 12.3 million docs
 - 2.1 million clusters of identical docs – 5.3 million docs
 - remaining 1.5 million clusters mixture:
 exact duplicates and similar