Finding near-duplicate documents

Duplicate versus near duplicate documents

• Duplicate = identical?
• Near duplicate: small structural differences
 • not just content similarity
• define “small”
 – date change?
 – small edits?
 – metadata change?
 – other?

Applications

• creating collection
 – indexing
• Crawling network
• Returning query results
 – cluster near duplicates; return 1
• Plagiarism

Framework

• Algorithm to assign quantitative degree of similarity between documents

 • Issues
 – What is basic token for documents?
 • character
 • word/term
 – What is threshold for “near duplicate”?
 – What are computational costs?

Classic document comparison

• Edit distance
 – count deletions, additions, substitutions to convert Doc\textsubscript{1} into Doc\textsubscript{2}
 – can each action can have different cost
 – applications
 • UNIX “diff”
 • similarity of genetic sequences
• Edit distance algorithm
 – dynamic programming
 – time $O(|Doc_1||Doc_2|)$

Edit distance for collections

• token = word
 – compare other applications
• Cost is $O(\sum |Doc_i||Doc_j|)$
• Right sense of similarity?
Addressing computation cost

A general paradigm to find duplicates in N docs:
1. Define function f capturing contents of each document in one number
 “Hash function”, “signature”, “fingerprint”
2. Create <f(doc), ID of doc> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold

Compare: computing a similarity score on pairs of documents

Optimistic cost

A general paradigm to find duplicates in N docs:
1. Define function f capturing contents of each document in one number
 “Hash function”, “signature”, “fingerprint”
2. Create <f(doc), ID of doc> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold

Compare: computing a similarity score on pairs of documents

General paradigm: details

1. Define function f capturing contents of each document in one number
 “Hash function”, “signature”, “sketch”, “fingerprint”
2. Create <f(doc), ID of doc> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold
 - recognize exact duplicates:
 • threshold = 0
 • examine documents to verify duplicates
 - recognize near-duplicates
 Problem with “small threshold”?

General paradigm: details

4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold
 - recognize exact duplicates:
 • threshold = 0
 • examine documents to verify duplicates
 - recognize near-duplicates
 Problem with “small threshold”?

How deal with
<1, D_1> <1.01, D_2> <1.02, D_3><1.99, D_{100}>
and threshold .01 (using ≤ threshold) ?

“Syntactic clustering”

We will look at this one example:
Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig, Syntactic Clustering of the Web
Sixth International WWW Conference, 1997:

- “syntactic similarity” versus semantic
 Sequences of words
- Finding near duplicates
 Doc = sequence of words
 Word = Token
- Uses sampling
- Similarity based on shingles
- Does compare documents

Shingles

- A w-shingle is a contiguous subsequence of w words

- The w-shingling of doc D, S(D, w) is the set of unique w-shingles of D
Similarity of docs with shingles

- For fixed w, resemblance of docs A and B:

 $r(A, B) = \frac{|S(A) \cap S(B)|}{|S(A) \cup S(B)|}$

 Jaccard coefficient

- For fixed w, containment of doc A in doc B:

 $C(A, B) = \frac{|S(A) \cap S(B)|}{|S(A)|}$

- For fixed w, resemblance distance between docs A and B:

 $D(A, B) = 1 - r(A, B)$

 Is a metric (triangle inequality)

 Note we are now comparing documents!

Example

A: "a rose is red a rose is white"

4-shingles:

"a rose is red"

"rose is red a"

"is red a rose"

"red a rose is"

"a rose is white"

$D(A, B) = 0.25$

B: "a rose is white a rose is red"

4-shingles:

"a rose is white"

"rose is white a"

"is white a rose"

"white a rose is"

"a rose is red"

Sample of shingles

Want to estimate r and/or c

Do this by calculating approximation on a sample of shingles for fixed w

- 1-to-1 map each shingle to integer in fixed, large range R

 – 64-bit hash, $R = [0, 2^{64}-1]$

- Let Π be a random permutation from R to R

- For any $S(D)$ define:

 $H(D) =$ Set of integer hash values corresponding to shingles in $S(D)$

 $\Pi(D) =$ Set of permuted values in $H(D)$

 $x(\Pi, D) =$ smallest integer in $\Pi(D)$

Sketch of shingles

- Let Π_1, \ldots, Π_m be m random permutations $R \rightarrow R$

 – text: $m = 20$

 The sketch of doc D for Π_1, \ldots, Π_m is

 $\psi(D) = \{x(\Pi_i, D) | 1 \leq i \leq m\}$

 doc \rightarrow set shingles \rightarrow set integers

 \rightarrow m sets permuted integers

 \rightarrow m smallest integers: one per permutation

 Sketch is a sampling

Approximation of resemblance

Theorem:

For random permutation Π:

$r(\Pi, A) = P(x(\Pi, A) = x(\Pi, B))$

Estimate $P(x(\Pi, A) = x(\Pi, B))$ as

$|\psi(A) \cap \psi(B)| / m$

recall m is # permutations

Algorithm used (text's version)

1. Calculate sketch $\psi(D)$ for every doc D_i

2. Calculate $|\psi(D_i) \cap \psi(D_j)| = c_{ij}$ for each non-empty intersection:

 i. Produce list of $<$shingle value, docID$>$ pairs for all shingle values $x(\Pi, D)$ in the sketch for each doc.

 ii. Sort the list by shingle value

 iii. Produce all triples $<$id(D), id(D'), $c_{ij}>$ for which $c_{ij} > 0$

 This not linear-time for the list of docs for one shingle value

3. Build clusters of similar/almost identical docs

Degree of similarity depends on threshold …
Clustering

1. Define docs to be similar if approximate resemblance greater than a predetermined threshold t:

 $$\frac{c_{ij}}{m} > t$$

2. Build graph of docs: edge between each pair of similar docs

3. The clusters of similar docs are the connected components in the graph

 - what type clustering?

Paradigm?

- Does compare docs, so not same as paradigm we started with, but uses ideas
- Contents of doc captured by sketch – a set of shingle values
- Similarity of docs scored by count of common shingle values for docs
- Don’t look at all doc pairs, look at all doc pairs that share a shingle value
- Uses clustering by similarity threshold

Algorithm cost

1. Calculate sketch $\psi(D_i)$ for every D_i $O(|D_i|)$

2. Calculate $|\psi(D_i) \cap \psi(D_j)| = c_{ij}$ for each non-empty intersection:
 - i. Produce list of <shingle value, docID> pairs for all shingle values $x(\psi(D_i))$ in the sketch for each doc.
 - ii. Sort the list by shingle value $O(mN \log (mN))$
 - iii. Produce all triples <ID(D_i), ID(D_j), ct_{ij} > for which $ct_{ij} > 0$

 This not linear-time for the list of docs for one shingle value $O(mN^2)$

3. Build clusters of similar/almost identical docs

 Degree of similarity depends on threshold ...

More efficient : supershingles

“meta-sketch”

1. Sort shingle values of a sketch
2. Compute the shingling of the sequence of shingle values
 - Each original shingle value now a token
 - Gives “supershingles”
3. “meta-sketch” = set of supershingles

 One supershingle in common =>

 sequences of shingles in common

 Documents with ≥ 1 supershingle in common => similar

 - Each supershingle for a doc, characterizes the doc
 - Sort <supershingle, docID> pairs: docs sharing a supershingle are similar => our first paradigm

Revisit the original paradigm

A general paradigm to find duplicates in N docs:

1. Define function f capturing contents of each document in one number $O(|doc|)$
 - “Hash function”, “signature”, “fingerprint”
2. Create <f(doc), ID of doc> pairs $O(\sum_{i=1...N} (|doc_i|))$
3. Sort the pairs $O(N \log N)$
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold $O(N)$

Compare: computing a similarity score on pairs of documents

More efficient : supershingles

“meta-sketch”

1. Sort shingle values of a sketch
2. Compute the shingling of the sequence of shingle values
 - Each original shingle value now a token
 - Gives “supershingles”
3. “meta-sketch” = set of supershingles

 One supershingle in common =>

 sequences of shingles in common

 Documents with ≥ 1 supershingle in common => similar

 - Each supershingle for a doc, characterizes the doc
 - Sort <supershingle, docID> pairs: docs sharing a supershingle are similar => our first paradigm
Pros and Cons of Supershingles

+ Faster
- Problems with small documents – not enough shingles
- Can’t do containment
 Shingles of superset that are not in subset break up sequence of shingle values

Variations of shingling

- Can define different ways to do sampling
- Studies in original paper used modular arithmetic
 – sketch formed by taking shingle hash values mod some selected m

Experiments (1996) by Broder et. al.

- 30 million HTML and text docs (150GB) from Web crawl
- 10-word shingles
- 600 million shingles (3GB)
- 40-bit shingle “fingerprints”
- Sketch using 4% shingles (variation of alg. we’ve seen)
- Used count of shingles for similarity
- Using threshold $t = 50\%$, found
 – 3.6 million clusters of 12.3 million docs
 – 2.1 million clusters of identical docs – 5.3 million docs
 – remaining 1.5 million clusters mixture:
 exact duplicates and similar