Clustering Algorithms
for general similarity measures

Types of general clustering methods

- **agglomerative** versus **divisive** algorithms
 - **agglomerative** = bottom-up
 - build up clusters from single objects
 - **divisive** = top-down
 - break up cluster containing all objects into smaller clusters
 - both agglomerative and divisive give hierarchies
 - hierarchy can be trivial:
 1. (...)...
 2. (((...)...)...)...
 3. (((...)...)...)...
 4. (((...)...)...)...

Similarity between clusters

Possible definitions:

I. similarity between most similar pair of objects with one in each cluster
 - called **single link**

II. similarity between least similar pair objects, one from each cluster
 - called **complete linkage**

Similarity between clusters, cont.

Possible definitions:

III. average of pairwise similarity between all pairs of objects, one from each
 - more computation

- Generally no representative point for a cluster;
 - compare K-means
- If using Euclidean distance as metric
 - centroid
 - bounding box

General **Agglomerative**

- Uses any computable cluster similarity measure \(\text{sim}(C_i, C_j) \)
- For \(n \) objects \(v_1, \ldots, v_n \), assign each to a singleton cluster \(C_i = \{v_i\} \)
- repeat \{
 - identify two most similar clusters \(C_i \) and \(C_k \) (could be ties – chose one pair)
 - delete \(C_i \) and \(C_k \) and add \((C_i \cup C_k) \) to the set of clusters
- \} until only one cluster
- Dendrograms diagram the sequence of cluster merges.

Agglomerative: remarks

- *Intro. to IR* discusses in great detail for cluster similarity:
 - single-link, complete-link, avg. of all pairs, centroid
- Uses priority queues to get time complexity
 \(O((n^2 \log n)^* (\text{time to compute cluster similarity})) \)
 - one priority queue for each cluster: contains similarities to all other clusters plus bookkeeping info
 - time complexity more precisely:
 \(O((n^2)^* (\text{time to compute object-object similarity}) + (n \log n)^* (\text{time to compute sim(cluster, cluster, cluster)})) \)
- Problem with priority queue?
Single pass agglomerative-like

Given arbitrary order of objects to cluster: \(v_1, \ldots, v_n\) and threshold \(\tau\)

Put \(v_1\) in cluster \(C_1\) by itself

For \(i = 2\) to \(n\) {
 for all existing clusters \(C_j\)
 calculate \(\text{sim}(v_i, C_j)\);
 record most similar cluster to \(v_i\) as \(C_{\text{max}(i)}\)
 if \(\text{sim}(v_i, C_{\text{max}(i)}) > \tau\)
 add \(v_i\) to \(C_{\text{max}(i)}\)
 else create new cluster \(\{v_i\}\)
}

Issues

• put \(v_i\) in cluster after seeing only \(v_1, \ldots, v_{i-1}\)
• not hierarchical
• tends to produce large clusters
 – depends on \(\tau\)
• depends on order of \(v_i\)

Alternate perspective for single-link algorithm

• Build a minimum spanning tree (MST) - graph alg.
 – edge weights are pair-wise similarities
 – since in terms of similarities, not distances, really want maximum spanning tree
• For some threshold \(\tau\), remove all edges of similarity < \(\tau\)
• Tree falls into pieces => clusters
• Not hierarchical, but get hierarchy for sequence of \(\tau\)

Hierarchical Divisive: Template

1. Put all objects in one cluster
2. Repeat until all clusters are singletons
 a) choose a cluster to split
 • what criterion?
 b) replace the chosen cluster with the sub-clusters
 • split into how many?
 • how split?
 • “reversing” agglomerative => split in two
• cutting operation: cut-based measures seem to be a natural choice.
 – focus on similarity across cut - lost similarity
• not necessary to use a cut-based measure

An Example

An Example: 1st cut
An Example: 2nd cut

An Example: stop at 3 clusters

Compare k-means result

Cut-based optimization

• weaken the connection between objects in different clusters rather than strengthening connection between objects within a cluster

• Are many cut-based measures
• We will look at one

Inter / Intra cluster costs

Given:
• \(V = \{v_1, \ldots, v_n\} \), the set of all objects
• A partitioning clustering \(C_1, C_2, \ldots, C_k \) of the objects: \(V = \bigcup_{i=1}^{k} C_i \).

Define:
• \(\text{cutcost}(C_p) = \sum_{v_i \in C_p} \sum_{v_j \in V \setminus C_p} \text{sim}(v_i, v_j) \).
• \(\text{intracost}(C_p) = \sum_{v_i, v_j \in C_p} \text{sim}(v_i, v_j) \).

Cost of a clustering

\[
\text{total relative cut cost}(C_1, \ldots, C_k) = \sum_{p=1}^{k} \frac{\text{cutcost}(C_p)}{\text{intracost}(C_p)}
\]

• contribution each cluster: ratio external similarity to internal similarity

Optimization

Find clustering \(C_1, \ldots, C_k \) that minimizes total relative cut cost(C_1, \ldots, C_k)
Simple example

- six objects
- similarity 1 if edge shown
- similarity 0 otherwise
- choice 1: cost UNDEFINED + 1/4
- choice 2: cost 1/1 + 1/3 = 4/3
- choice 3: cost 1/2 + 1/2 = 1 *prefer balance

Hierarchical divisive revisited

- can use one of cut-based algorithms to split a cluster
- how choose cluster to split next?
 - if building entire tree, doesn’t matter
 - if stopping a certain point, choose next cluster based on measure optimizing
 - e.g. for total relative cut cost, choose \(C_i \) with largest cutcost\((C_i) / \) intracost\((C_i) \)

Divisive Algorithm:
Iterative Improvement; no hierarchy
1. Choose initial partition \(C_1, \ldots, C_k \)
2. repeat {
 unlock all vertices
 repeat {
 choose some \(C_i \) at random
 choose an unlocked vertex \(v_j \) in \(C_i \)
 move \(v_j \) to that cluster, if any, such that move gives maximum decrease in cost
 lock vertex \(v_j \)
 } until all vertices locked
} until converge

Observations on algorithm

- heuristic
- uses randomness
- convergence usually improvement < some chosen threshold between outer loop iterations
- vertex “locking” insures that all vertices are examined before examining any vertex twice
- there are many variations of algorithm
- can use at each division of hierarchical divisive algorithm with \(k=2 \)
 - more computation than an agglomerative merge

Compare to k-means

- Similarities:
 - number of clusters, \(k \), is chosen in advance
 - an initial clustering is chosen (possibly at random)
 - iterative improvement is used to improve clustering

- Important difference:
 - divisive algorithm can minimize a cut-based cost
 - total relative cut cost uses external and internal measures
 - k-means maximizes only similarity within a cluster
 - ignores cost of cuts

Eigenvalues and clustering

General class of techniques for clustering a graph using eigenvectors of adjacency matrix (or similar matrix) called Spectral clustering

First described in 1973
Spectral clustering: brief overview

Given:
- \(k \): number of clusters
- \(nxn \) object-object sim. matrix \(S \) of non-neg. val.s

Compute:
1. Derive matrix \(L \) from \(S \) (straightforward computation)
 - e.g. Laplacian: are variations in def.
2. Find eigenvectors correspond. to \(k \) smallest eigenval.s of \(L \)
3. Use eigenvectors to define clusters
 - variety of ways to do this
 - all involve another, simpler, clustering
 - e.g. points on a line

Spectral clustering optimizes a cut measure
similar to total relative cut cost

Comparing clusterings

- Define external measure to
 - comparing two clusterings as to similarity
 - if one clustering "correct", one clustering by an algorithm, measures how well algorithm doing
 - refer to "correct" clusters as classes
 - "gold standard"
 - refer to computed clusters as clusters
- External measure independent of cost function optimized by algorithm

One measure: motivated by F-score in IR

- Given:
 - a set of classes \(S_1, \ldots, S_k \) of the objects
 use to define relevance
 - a computed clustering \(C_1, \ldots, C_k \) of the objects
 use to define retrieval
- Consider pairs of objects
 - pair in same class, call "similar pair" \(\equiv \) relevant
 - pair in different classes \(\equiv \) irrelevant
 - pair in same clusters \(\equiv \) retrieved
 - pair in different clusters \(\equiv \) not retrieved
- Use to define precision and recall

Properties of cluster F-score

- always \(\leq 1 \)
- Perfect match computed clusters to classes gives F-score = 1
- Symmetric
 - Two clusterings \(\{C_i\} \) and \(\{K_j\} \), neither "gold standard"
 - treat \(\{C_i\} \) as if are classes and compute F-score of \(\{K_j\} \) w.r.t. \(\{C_i\} \) = \(\text{F-score}_{Ci}([K_j]) \)
 - treat \(\{K_j\} \) as if are classes and compute F-score of \(\{C_i\} \) w.r.t. \(\{K_j\} \) = \(\text{F-score}_{Kj}([C_i]) \)
 - \(\implies \text{F-score}_{Ci}([K_j]) = \text{F-score}_{Kj}([C_i]) \)

Clustering f-score

Precision of the clustering w.r.t the gold standard = \[\frac{\# \text{ similar pairs in the same cluster}}{\# \text{ pairs in the same cluster}} \]

Recall of the clustering w.r.t the gold standard = \[\frac{\# \text{ similar pairs in the same cluster}}{\# \text{ similar pairs}} \]

F-score of the clustering w.r.t the gold standard = \[\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \]

Clustering f-score

- many applications
 - application determines similarity between objects
- menu of
 - cost functions to optimizes
 - similarity measures between clusters
 - types of algorithms
 - flat/hierarchical
 - constructive/iterative
 - algorithms within a type