Combinatorial Search

- permutations
- backtracking
- counting
- subsets
- paths in a graph
Overview

Exhaustive search. Iterate through all elements of a search space.

Applicability. Huge range of problems (include intractable ones).

Caveat. Search space is typically exponential in size ⇒ effectiveness may be limited to relatively small instances.

Backtracking. Systematic method for examining feasible solutions to a problem, by systematically pruning infeasible solutions.
Goal. Process all 2^N bit strings of length N.

- Maintain $a[i]$ where $a[i]$ represents bit i.
- Simple recursive method does the job.

```java
// enumerate bits in a[k] to a[N-1]
private void enumerate(int k) {
    if (k == N) {
        process(); return;
    }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Remark. Equivalent to counting in binary from 0 to $2^N - 1$.
public class BinaryCounter
{
 private int N; // number of bits
 private int[] a; // a[i] = ith bit

 public BinaryCounter(int N)
 {
 this.N = N;
 this.a = new int[N];
 enumerate(0);
 }

 private void process()
 {
 for (int i = 0; i < N; i++)
 StdOut.print(a[i]) + " ";
 StdOut.println();
 }

 private void enumerate(int k)
 {
 if (k == N)
 { process(); return; }
 enumerate(k+1);
 a[k] = 1;
 enumerate(k+1);
 a[k] = 0;
 }
}

public static void main(String[] args)
{
 int N = Integer.parseInt(args[0]);
 new BinaryCounter(N);
}

% java BinaryCounter 4
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

all programs in this lecture are variations on this theme
N-rooks problem

Q. How many ways are there to place N rooks on an N-by-N board so that no rook can attack any other?

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

int[] a = { 2, 0, 1, 3, 6, 7, 4, 5 };

Representation. No two rooks in the same row or column ⇒ permutation.

Challenge. Enumerate all $N!$ permutations of 0 to $N-1$.

Enumerating permutations

Recursive algorithm to enumerate all \(N! \) permutations of size \(N \).

- Start with permutation \(a[0] \) to \(a[N-1] \).
- For each value of \(i \):
 - swap \(a[i] \) into position 0
 - enumerate all \((N-1)! \) permutations of \(a[1] \) to \(a[N-1] \)
 - clean up (swap \(a[i] \) back to original position)

<table>
<thead>
<tr>
<th>(N = 2)</th>
<th>(N = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>0 1 2</td>
</tr>
<tr>
<td>1 0</td>
<td>0 2 1</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1 2</td>
</tr>
<tr>
<td>1 2</td>
<td>0 2 1 3</td>
</tr>
<tr>
<td>1 0</td>
<td>0 2 1 3</td>
</tr>
<tr>
<td>0 2</td>
<td>0 2 3 1</td>
</tr>
<tr>
<td>0 3</td>
<td>0 2 3 1</td>
</tr>
<tr>
<td>0 1</td>
<td>0 3 2 1</td>
</tr>
<tr>
<td>1 3</td>
<td>0 3 2 1</td>
</tr>
<tr>
<td>1 0</td>
<td>0 3 1 2</td>
</tr>
<tr>
<td>0 2</td>
<td>0 3 1 2</td>
</tr>
<tr>
<td>0 1</td>
<td>2 1 0</td>
</tr>
<tr>
<td>2 0</td>
<td>2 1 0</td>
</tr>
<tr>
<td>2 1</td>
<td>2 0 1</td>
</tr>
<tr>
<td>0 1</td>
<td>2 0 1</td>
</tr>
<tr>
<td>2 1</td>
<td>2 0 1</td>
</tr>
<tr>
<td>0 1</td>
<td>0 1 2</td>
</tr>
</tbody>
</table>

cleanup swaps that bring perm back to original

\(a[0] \) \(a[N-1] \)
Enumerating permutations

Recursive algorithm to enumerate all N! permutations of size N.

- Start with permutation a[0] to a[N-1].
- For each value of i:
 - swap a[i] into position 0
 - enumerate all (N-1)! permutations of a[1] to a[N-1]
 - clean up (swap a[i] back to original position)

```java
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }

    for (int i = k; i < N; i++)
    {
        exch(k, i);
        enumerate(k+1);
        exch(i, k);
    }
}
```

java Rooks 4

```plaintext
0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2
1 0 2 3
1 0 3 2
1 2 0 3
1 2 3 0
1 3 2 0
1 3 0 2
2 1 0 3
2 1 3 0
2 0 1 3
2 0 3 1
2 3 0 1
2 3 1 0
3 1 2 0
3 1 0 2
3 2 1 0
3 2 0 1
3 0 2 1
3 0 1 2
```

0 followed by perms of 1 2 3
1 followed by perms of 0 2 3
2 followed by perms of 1 0 3
3 followed by perms of 1 2 0
public class Rooks
{
 private int N;
 private int[] a; // bits (0 or 1)

 public Rooks(int N)
 {
 this.N = N;
 a = new int[N];
 for (int i = 0; i < N; i++)
 a[i] = i;
 enumerate(0);
 }

 private void enumerate(int k)
 {
 /* see previous slide */
 }

 private void exch(int i, int j)
 {
 int t = a[i]; a[i] = a[j]; a[j] = t;
 }

 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 new Rooks(N);
 }
}
4-rooks search tree
N-rooks problem: back-of-envelope running time estimate

Slow way to compute $N!$.

```
% java Rooks 7 | wc -l
5040

% java Rooks 8 | wc -l
40320

% java Rooks 9 | wc -l
362880

% java Rooks 10 | wc -l
3628800

% java Rooks 25 | wc -l ...
```

Hypothesis. Running time is about $2(N! / 8!)$ seconds.
permutations
backtracking
counting
subsets
paths in a graph
N-queens problem

Q. How many ways are there to place N queens on an N-by-N board so that no queen can attack any other?

int[] a = { 2, 7, 3, 6, 0, 5, 1, 4 };

Representation. No two queens in the same row or column ⇒ permutation.

Additional constraint. No diagonal attack is possible.

Challenge. Enumerate (or even count) the solutions. Unlike N-rooks problem, nobody knows answer for N > 30
4-queens search tree

diagonal conflict on partial solution: no point going deeper

solutions
4-queens search tree (pruned)

"backtrack" on diagonal conflicts

solutions
N-queens problem: backtracking solution

Backtracking paradigm. Iterate through elements of search space.
- When there are several possible choices, make one choice and recur.
- If the choice is a **dead end**, backtrack to previous choice, and make next available choice.

Benefit. Identifying dead ends allows us to **prune** the search tree.

Ex. [backtracking for N-queens problem]
- Dead end: a diagonal conflict.
- Pruning: backtrack and try next column when diagonal conflict found.
N-queens problem: backtracking solution

```java
private boolean backtrack(int k)
{
    for (int i = 0; i < k; i++)
    {
        if ((a[i] - a[k]) == (k - i)) return true;
        if ((a[k] - a[i]) == (k - i)) return true;
    }
    return false;
}

// place N-k queens in a[k] to a[N-1]
private void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    for (int i = k; i < N; i++)
    {
        exch(k, i);
        if (!backtrack(k)) enumerate(k+1);
        exch(i, k);
    }
}
```

Stop enumerating if adding queen k leads to a diagonal violation.
N-queens problem: effectiveness of backtracking

Pruning the search tree leads to enormous time savings.

<table>
<thead>
<tr>
<th>N</th>
<th>$Q(N)$</th>
<th>$N!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>720</td>
</tr>
<tr>
<td>7</td>
<td>40</td>
<td>5,040</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>40,320</td>
</tr>
<tr>
<td>9</td>
<td>352</td>
<td>362,880</td>
</tr>
<tr>
<td>10</td>
<td>724</td>
<td>3,628,800</td>
</tr>
<tr>
<td>11</td>
<td>2,680</td>
<td>39,916,800</td>
</tr>
<tr>
<td>12</td>
<td>14,200</td>
<td>479,001,600</td>
</tr>
<tr>
<td>13</td>
<td>73,712</td>
<td>6,227,020,800</td>
</tr>
<tr>
<td>14</td>
<td>365,596</td>
<td>87,178,291,200</td>
</tr>
</tbody>
</table>
N-queens problem: How many solutions?

Hypothesis. Running time is about \((N! / 2.5^N) / 43,000\) seconds.

Conjecture. \(Q(N) \approx N! / c^N\), where \(c\) is about 2.54.
- permutations
- backtracking
- counting
- subsets
- paths in a graph
Counting: Java implementation

Goal. Enumerate all N-digit base-R numbers.

Solution. Generalize binary counter in lecture warmup.

```java
private static void enumerate(int k)
{
    if (k == N)
    {  process(); return;  }
    for (int r = 0; r < R; r++)
    {
        a[k] = r;
        enumerate(k+1);
    }
    a[k] = 0;
}
```

// enumerate base-R numbers in a[k] to a[N-1]
private static void enumerate(int k)
{
 if (k == N)
 { process(); return; }
 for (int r = 0; r < R; r++)
 {
 a[k] = r;
 enumerate(k+1);
 }
 a[k] = 0;
}

```
% java Counter 2 4
0 0
0 1
0 2
0 3
1 0
1 1
1 2
1 3
2 0
2 1
2 2
2 3
3 0
3 1
3 2
3 3

% java Counter 3 2
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
```

cleanup not needed; why?
Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Remark. Natural generalization is NP-complete.
Counting application: Sudoku

Goal. Fill 9-by-9 grid so that every row, column, and box contains each of the digits 1 through 9.

Solution. Enumerate all 81-digit base-9 numbers (with backtracking).
Sudoku: backtracking solution

Iterate through elements of search space.
- For each empty cell, there are 9 possible choices.
- Make one choice and recur.
- If you find a conflict in row, column, or box, then backtrack.

```
Iterate through elements of search space.
• For each empty cell, there are 9 possible choices.
• Make one choice and recur.
• If you find a conflict in row, column, or box, then backtrack.
```
private void enumerate(int k)
{
 if (k == 81)
 {
 process(); return;
 }
 if (a[k] != 0)
 {
 enumerate(k+1); return;
 }
 for (int r = 1; r <= 9; r++)
 {
 a[k] = r;
 if (!backtrack(k))
 enumerate(k+1);
 }
 a[k] = 0;
}

found a solution

found a solution

cell k initially filled in; recur on next cell

try 9 possible digits for cell k

try 9 possible digits for cell k

unless it violates a Sudoku constraint (see booksite for code)

unless it violates a Sudoku constraint (see booksite for code)

clean up

clean up

% more board.txt
7 0 8 0 0 0 3 0 0
0 0 0 2 0 1 0 0 0
5 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 2 6
3 0 0 8 0 0 0 0 0
0 0 0 1 0 0 0 9 0
0 9 0 6 0 0 0 0 4
0 0 0 7 0 5 0 0 0
0 0 0 0 0 0 0 0 0

% java Sudoku < board.txt
7 2 8 9 4 6 3 1 5
9 3 4 2 5 1 6 7 8
5 1 6 7 3 8 2 4 9
1 4 7 5 9 3 8 2 6
3 6 9 4 8 2 1 5 7
8 5 2 1 6 7 4 9 3
2 9 3 6 1 5 7 8 4
4 8 1 3 7 9 5 6 2
6 7 5 8 2 4 9 3 1
- permutations
- backtracking
- counting
- subsets
- paths in a graph
Enumerating subsets: natural binary encoding

Given N items, enumerate all 2^N subsets.
- Count in binary from 0 to $2^N - 1$.
- Bit i represents item i.
- If 0, in subset; if 1, not in subset.

<table>
<thead>
<tr>
<th>i</th>
<th>binary</th>
<th>subset</th>
<th>complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>empty</td>
<td>4 3 2 1</td>
</tr>
<tr>
<td>1</td>
<td>0 0 0 1</td>
<td>1</td>
<td>4 3 2</td>
</tr>
<tr>
<td>2</td>
<td>0 0 1 0</td>
<td>2</td>
<td>4 3 1</td>
</tr>
<tr>
<td>3</td>
<td>0 0 1 1</td>
<td>2 1</td>
<td>4 3</td>
</tr>
<tr>
<td>4</td>
<td>0 1 0 0</td>
<td>3</td>
<td>4 2 1</td>
</tr>
<tr>
<td>5</td>
<td>0 1 0 1</td>
<td>3 1</td>
<td>4 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 1 0</td>
<td>3 2</td>
<td>4 1</td>
</tr>
<tr>
<td>7</td>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1 0 0 0</td>
<td>4</td>
<td>3 2 1</td>
</tr>
<tr>
<td>9</td>
<td>1 0 0 1</td>
<td>4 1</td>
<td>3 2</td>
</tr>
<tr>
<td>10</td>
<td>1 0 1 0</td>
<td>4 2</td>
<td>3 1</td>
</tr>
<tr>
<td>11</td>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>1 1 0 0</td>
<td>4 3</td>
<td>2 1</td>
</tr>
<tr>
<td>13</td>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>empty</td>
</tr>
</tbody>
</table>
Enumerating subsets: natural binary encoding

Given N items, enumerate all 2^N subsets.
- Count in binary from 0 to $2^N - 1$.
- Maintain $a[i]$ where $a[i]$ represents item i.
- If 0, $a[i]$ in subset; if 1, $a[i]$ not in subset.

Binary counter from warmup does the job.

```java
private void enumerate(int k)
{
  if (k == N)
  {  process(); return;  }
  enumerate(k+1);
  a[k] = 1;
  enumerate(k+1);
  a[n] = 0;
}
```
Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

<table>
<thead>
<tr>
<th>code</th>
<th>subset</th>
<th>move</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>empty</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>1</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>2 1</td>
<td>enter 2</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>2</td>
<td>exit 1</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>3 2</td>
<td>enter 3</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>3 2 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>3 1</td>
<td>exit 2</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>3</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>4 3</td>
<td>enter 4</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>4 3 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>4 3 2 1</td>
<td>enter 2</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>4 3 2</td>
<td>exit 1</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>4 2</td>
<td>exit 3</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>4 2 1</td>
<td>enter 1</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>4 1</td>
<td>exit 2</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>4</td>
<td>exit 1</td>
</tr>
</tbody>
</table>
Digression: Samuel Beckett play

Quad. Starting with empty stage, 4 characters enter and exit one at a time, such that each subset of actors appears exactly once.

“faceless, emotionless one of the far future, a world where people are born, go through prescribed movements, fear non-being even though their lives are meaningless, and then they disappear or die.” — Sidney Homan
Def. The k-bit binary reflected Gray code is:

- the (k-1) bit code with a 0 prepended to each word, followed by
- the (k-1) bit code in reverse order, with a 1 prepended to each word.
Enumerating subsets using Gray code

Two simple changes to binary counter from warmup:
- Flip \(a[k] \) instead of setting it to 1.
- Eliminate cleanup.

Gray code binary counter

```java
private void enumerate(int k) {
    if (k == N) {
        process();
        return;
    }
    enumerate(k+1);
    a[k] = 1 - a[k];
    enumerate(k+1);
}
```

Standard binary counter (from warmup)

```java
private void enumerate(int k) {
    if (k == N) {
        process();
        return;
    }
    enumerate(k+1);
    a[k] = 1;
    enumerate(k+1);
    a[k] = 0;
}
```

Advantage. Only one item in subset changes at a time.
More applications of Gray codes

3-bit rotary encoder

8-bit rotary encoder

Towers of Hanoi

Chinese ring puzzle
Scheduling

Scheduling (set partitioning). Given n jobs of varying length, divide among two machines to minimize the makespan (time the last job finishes).

<table>
<thead>
<tr>
<th>job</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.41</td>
</tr>
<tr>
<td>1</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>2.23</td>
</tr>
</tbody>
</table>

or, equivalently, difference between finish times

<table>
<thead>
<tr>
<th>machine 0</th>
<th>machine 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 2</td>
<td>1 3</td>
</tr>
<tr>
<td>0 3</td>
<td>1 2</td>
</tr>
</tbody>
</table>

Remark. This scheduling problem is NP-complete.
Scheduling (full implementation)

```java
public class Scheduler
{
    private int N;          // Number of jobs.
    private int[] a;        // Subset assignments.
    private int[] b;        // Best assignment.
    private double[] jobs;  // Job lengths.

    public Scheduler(double[] jobs)
    {
        this.N = jobs.length;
        this.jobs = jobs;
        a = new int[N];
        b = new int[N];
        enumerate(N);
    }

    public int[] best()
    {  return b;  }

    private void enumerate(int k)
    { /* Gray code enumeration. */  }

    private void process()
    {
        if (cost(a) < cost(b))
            for (int i = 0; i < N; i++)
                b[i] = a[i];
    }

    public static void main(String[] args)
    { /* create Scheduler, print results */  }
}
```

trace of
% java Scheduler 4 < jobs.txt

<table>
<thead>
<tr>
<th>a[]</th>
<th>finish times</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0</td>
<td>7.38</td>
<td>0.00</td>
</tr>
<tr>
<td>0 0 0 1</td>
<td>5.15</td>
<td>2.24</td>
</tr>
<tr>
<td>0 0 1 1</td>
<td>3.15</td>
<td>4.24</td>
</tr>
<tr>
<td>0 0 1 0</td>
<td>5.38</td>
<td>2.00</td>
</tr>
<tr>
<td>0 1 1 0</td>
<td>3.65</td>
<td>3.73</td>
</tr>
<tr>
<td>0 1 1 1</td>
<td>1.41</td>
<td>5.97</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>3.41</td>
<td>3.97</td>
</tr>
<tr>
<td>0 1 0 0</td>
<td>5.65</td>
<td>1.73</td>
</tr>
<tr>
<td>1 1 0 0</td>
<td>4.24</td>
<td>3.15</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>2.00</td>
<td>5.38</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>0.00</td>
<td>7.38</td>
</tr>
<tr>
<td>1 1 1 0</td>
<td>2.24</td>
<td>5.15</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>3.97</td>
<td>3.41</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td>1.73</td>
<td>5.65</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>3.73</td>
<td>3.65</td>
</tr>
<tr>
<td>1 0 0 0</td>
<td>5.97</td>
<td>1.41</td>
</tr>
</tbody>
</table>

MACHINE 0 MACHINE 1
1.4142135624 1.7320508076
2.0000000000 2.0000000000
2.2360679775
3.6502815399 3.7320508076
Observation. Large number of subsets leads to remarkably low cost.
Scheduling: improvements

Many opportunities (details omitted).

- Fix last job to be on machine 0 (quick factor-of-two improvement).
- Maintain difference in finish times (instead of recomputing from scratch).
- Backtrack when partial schedule cannot beat best known.
 (check total against goal: half of total job times)

```java
private void enumerate(int k)
{
    if (k == N-1)
    {  process(); return;  }
    if (backtrack(k)) return;
    enumerate(k+1);
    a[k] = 1 - a[k];
    enumerate(k+1);
}
```

- Process all 2^k subsets of last k jobs, keep results in memory,
 (reduces time to 2^{N-k} when 2^k memory available).
‣ permutations
‣ backtracking
‣ counting
‣ subsets
‣ paths in a graph
Enumerating all paths on a grid

Goal. Enumerate all simple paths on a grid of adjacent sites.

Application. Self-avoiding lattice walk to model polymer chains.
Enumerating all paths on a grid: Boggle

Boggle. Find all words that can be formed by tracing a simple path of adjacent cubes (left, right, up, down, diagonal).

Pruning. Stop as soon as no word in dictionary contains string of letters on current path as a prefix \Rightarrow use a trie.
private void dfs(String prefix, int i, int j) {
 if ((i < 0 || i >= N) ||
 (j < 0 || j >= N) ||
 (visited[i][j]) ||
 !dictionary.containsAsPrefix(prefix))
 return;
 visited[i][j] = true;
 prefix = prefix + board[i][j];
 if (dictionary.contains(prefix))
 found.add(prefix);
 for (int ii = -1; ii <= 1; ii++)
 for (int jj = -1; jj <= 1; jj++)
 dfs(prefix, i + ii, j + jj);
 visited[i][j] = false;
}
Hamiltion path

Goal. Find a simple path that visits every vertex exactly once.

Remark. Euler path easy, but Hamilton path is NP-complete.
Knight's tour

Goal. Find a sequence of moves for a knight so that (starting from any desired square) it visits every square on a chessboard exactly once.

Solution. Find a Hamilton path in knight's graph.
Hamilton path: backtracking solution

Backtracking solution. To find Hamilton path starting at \(v \):
- Add \(v \) to current path.
- For each vertex \(w \) adjacent to \(v \)
 - find a simple path starting at \(w \) using all remaining vertices
- Clean up: remove \(v \) from current path.

Q. How to implement?
A. Add cleanup to DFS (!!)
public class HamiltonPath
{
 private boolean[] marked; // vertices on current path
 private int count = 0; // number of Hamiltonian paths

 public HamiltonPath(Graph G)
 {
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 dfs(G, v, 1);
 }

 private void dfs(Graph G, int v, int depth)
 {
 marked[v] = true;
 if (depth == G.V()) count++;
 for (int w : G.adj(v))
 if (!marked[w]) dfs(G, w, depth+1);
 marked[v] = false;
 }
}
Exhaustive search: summary

<table>
<thead>
<tr>
<th>problem</th>
<th>enumeration</th>
<th>backtracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-rooks</td>
<td>permutations</td>
<td>no</td>
</tr>
<tr>
<td>N-queens</td>
<td>permutations</td>
<td>yes</td>
</tr>
<tr>
<td>Sudoku</td>
<td>base-9 numbers</td>
<td>yes</td>
</tr>
<tr>
<td>scheduling</td>
<td>subsets</td>
<td>yes</td>
</tr>
<tr>
<td>Boggle</td>
<td>paths in a grid</td>
<td>yes</td>
</tr>
<tr>
<td>Hamilton path</td>
<td>paths in a graph</td>
<td>yes</td>
</tr>
</tbody>
</table>
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!

If you said P is NP tonight,
There would still be papers left to write,
I have a weakness,
I'm addicted to completeness,
And I keep searching for the longest path.

The algorithm I would like to see
Is of polynomial degree,
But it's elusive:
Nobody has found conclusive
Evidence that we can find a longest path.

I have been hard working for so long.
I swear it's right, and he marks it wrong.
Some how I'll feel sorry when it's done: GPA 2.1
Is more than I hope for.

Garey, Johnson, Karp and other men (and women)
Tried to make it order N log N.
Am I a mad fool
If I spend my life in grad school,
Forever following the longest path?

Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path!
Woh-oh-oh-oh, find the longest path.

Recorded by Dan Barrett in 1988
while a student at Johns Hopkins
during a difficult algorithms final
That’s all, folks: Keep searching!

The world’s longest path (Chile): 8500 km