Switches and Bridges

COS 461: Computer Networks
Spring 2009 (MW 1:30-2:50 in COS 105)

Guest Lecture
Jennifer Rexford
Goals of Today’s Lecture

- **Devices that shuttle data at different layers**
 - Repeaters and hubs
 - Bridges and switches
 - Routers

- **Switch protocols and mechanisms**
 - Dedicated access and full-duplex transfers
 - Cut-through switching
 - Self learning of the switch table
 - Spanning trees

- **Virtual LANs (VLANs)**
Message, Segment, Packet, and Frame

- **HTTP**
- **TCP**
- **IP**
- **Ethernet**

Host

- **HTTP**
- **TCP**
- **IP**
- **Ethernet interface**

Router

- **IP**
- **Ethernet interface**
- **SONET interface**

Frame

- **Ethernet frame**
- **SONET frame**
- **Ethernet frame**
Shuttling Data at Different Layers

- Different devices switch different things
 - Network layer: packets (routers)
 - Link layer: frames (bridges and switches)
 - Physical layer: electrical signals (repeaters and hubs)
Physical Layer: Repeaters

- **Distance limitation in local-area networks**
 - Electrical signal becomes weaker as it travels
 - Imposes a limit on the length of a LAN

- **Repeaters join LANs together**
 - Analog electronic device
 - Continuously monitors electrical signals on each LAN
 - Transmits an amplified copy
Physical Layer: Hubs

- Joins multiple input lines electrically
 - Designed to hold multiple line cards
 - Do not necessarily amplify the signal

- Very similar to repeaters
 - Also operates at the physical layer
Limitations of Repeaters and Hubs

• One large shared link
 – Each bit is sent everywhere
 – So, aggregate throughput is limited
 – E.g., three departments each get 10 Mbps independently
 – … and then connect via a hub and must share 10 Mbps

• Cannot support multiple LAN technologies
 – Does not buffer or interpret frames
 – So, can’t interconnect between different rates or formats
 – E.g., 10 Mbps Ethernet and 100 Mbps Ethernet

• Limitations on maximum nodes and distances
 – Shared medium imposes length limits
 – E.g., cannot go beyond 2500 meters on Ethernet
Link Layer: Bridges

- Connects two or more LANs at the link layer
 - Extracts destination address from the frame
 - Looks up the destination in a table
 - Forwards the frame to the appropriate LAN segment

- Each segment can carry its own traffic
Link Layer: Switches

• Typically connects individual computers
 – A switch is essentially the same as a bridge
 – … though typically used to connect hosts, not LANs

• Like bridges, support concurrent communication
 – Host A can talk to C, while B talks to D
Dedicated Access and Full Duplex

• **Dedicated access**
 – Host has direct connection to the switch
 – … rather than a shared LAN connection

• **Full duplex**
 – Each connection can send in both directions
 – Host sending to switch, and host receiving from switch
 – E.g., in 10BaseT and 100Base T

• **Completely supports concurrent transmissions**
 – Each connection is a bidirectional point-to-point link
Bridges/Switches: Traffic Isolation

- Switch breaks subnet into LAN segments
- Switch filters packets
 - Frame only forwarded to the necessary segments
 - Segments can support separate transmissions

![Diagram of switch and segments]
Advantages Over Hubs/Repeaters

• Only forwards frames as needed
 – Filters frames to avoid unnecessary load on segments
 – Sends frames only to segments that need to see them

• Extends the geographic span of the network
 – Separate segments allow longer distances

• Improves privacy by limiting scope of frames
 – Hosts can “snoop” the traffic traversing their segment
 – … but not all the rest of the traffic

• Can join segments using different technologies
Disadvantages Over Hubs/Repeaters

• Delay in forwarding frames
 – Bridge/switch must receive and parse the frame
 – … and perform a look-up to decide where to forward
 – Storing and forwarding the packet introduces delay
 – Solution: cut-through switching

• Need to learn where to forward frames
 – Bridge/switch needs to construct a forwarding table
 – Ideally, without intervention from network administrators
 – Solution: self-learning

• Higher cost
 – More complicated devices that cost more money
Motivation For Cut-Through Switching

• Buffering a frame takes time
 – Suppose L is the length of the frame
 – And R is the transmission rate of the links
 – Then, receiving the frame takes L/R time units

• Buffering delay can be a high fraction of total delay
 – Propagation delay is small over short distances
 – Making buffering delay a large fraction of total
 – Analogy: large group walking through NYC
Cut-Through Switching

• Start transmitting as soon as possible
 – Inspect the frame header and do the look-up
 – If outgoing link is idle, start forwarding the frame

• Overlapping transmissions
 – Transmit the head of the packet via the outgoing link
 – … while still receiving the tail via the incoming link
 – Analogy: different folks crossing different intersections
Motivation For Self Learning

• Switches forward frames selectively
 – Forward frames only on segments that need them

• Switch table
 – Maps destination MAC address to outgoing interface
 – Goal: construct the switch table automatically
Self Learning: Building the Table

• When a frame arrives
 – Inspect the source MAC address
 – Associate the address with the incoming interface
 – Store the mapping in the switch table
 – Use a time-to-live field to eventually forget the mapping

Switch learns how to reach A.
Self Learning: Handling Misses

• When frame arrives with unfamiliar destination
 – Forward the frame out all of the interfaces
 – … except for the one where the frame arrived
 – Hopefully, this case won’t happen very often
Switch Filtering/Forwarding

When switch receives a frame:

index switch table using MAC dest address

if entry found for destination
 then{
 if dest on segment from which frame arrived
 then drop the frame
 else forward the frame on interface indicated
 }

else flood
 forward on all but the interface on which the frame arrived
Flooding Can Lead to Loops

- Switches sometimes need to broadcast frames
 - Upon receiving a frame with an unfamiliar destination
 - Upon receiving a frame sent to the broadcast address

- Broadcasting is implemented by flooding
 - Transmitting frame out every interface
 - … except the one where the frame arrived

- Flooding can lead to forwarding loops
 - E.g., if the network contains a cycle of switches
 - Either accidentally, or by design for higher reliability
Solution: Spanning Trees

• Ensure the topology has no loops
 – Avoid using some of the links when flooding
 – … to avoid forming a loop

• Spanning tree
 – Sub-graph that covers all vertices but contains no cycles
 – Links not in the spanning tree do not forward frames
Constructing a Spanning Tree

• Need a distributed algorithm
 – Switches cooperate to build the spanning tree
 – … and adapt automatically when failures occur

• Key ingredients of the algorithm
 – Switches need to elect a “root”
 • The switch with the smallest identifier
 – Each switch identifies if its interface is on the shortest path from the root
 • And it exclude from the tree if not
 – Messages (Y, d, X)
 • From node X
 • Claiming Y is the root
 • And the distance is d
Steps in Spanning Tree Algorithm

• Initially, each switch thinks it is the root
 – Switch sends a message out every interface
 – … identifying itself as the root with distance 0
 – Example: switch X announces (X, 0, X)

• Switches update their view of the root
 – Upon receiving a message, check the root id
 – If the new id is smaller, start viewing that switch as root

• Switches compute their distance from the root
 – Add 1 to the distance received from a neighbor
 – Identify interfaces not on a shortest path to the root
 – … and exclude them from the spanning tree
Example From Switch #4’s Viewpoint

• Switch #4 thinks it is the root
 – Sends (4, 0, 4) message to 2 and 7

• Then, switch #4 hears from #2
 – Receives (2, 0, 2) message from 2
 – … and thinks that #2 is the root
 – And realizes it is just one hop away

• Then, switch #4 hears from #7
 – Receives (2, 1, 7) from 7
 – And realizes this is a longer path
 – So, prefers its own one-hop path
 – And removes 4-7 link from the tree
Example From Switch #4’s Viewpoint

• Switch #2 hears about switch #1
 – Switch 2 hears (1, 1, 3) from 3
 – Switch 2 starts treating 1 as root
 – And sends (1, 2, 2) to neighbors

• Switch #4 hears from switch #2
 – Switch 4 starts treating 1 as root
 – And sends (1, 3, 4) to neighbors

• Switch #4 hears from switch #7
 – Switch 4 receives (1, 3, 7) from 7
 – And realizes this is a longer path
 – So, prefers its own three-hop path
 – And removes 4-7 link from the tree
Robust Spanning Tree Algorithm

• Algorithm must react to failures
 – Failure of the root node
 • Need to elect a new root, with the next lowest identifier
 – Failure of other switches and links
 • Need to recompute the spanning tree

• Root switch continues sending messages
 – Periodically reannouncing itself as the root (1, 0, 1)
 – Other switches continue forwarding messages

• Detecting failures through timeout (soft state!)
 – Switch waits to hear from others
 – Eventually times out and claims to be the root

See Section 3.2.2 in the textbook for details and another example
Evolution Toward Virtual LANs

• In the olden days…
 – Thick cables snaked through cable ducts in buildings
 – Every computer they passed was plugged in
 – All people in adjacent offices were put on the same LAN
 – Independent of whether they belonged together or not

• More recently…
 – Hubs and switches changed all that
 – Every office connected to central wiring closets
 – Often multiple LANs (k hubs) connected by switches
 – Flexibility in mapping offices to different LANs

Group users based on organizational structure, rather than the physical layout of the building.
Why Group by Organizational Structure?

• Security
 – Ethernet is a shared media
 – Any interface card can be put into “promiscuous” mode
 – … and get a copy of all of the traffic (e.g., midterm exam)
 – So, isolating traffic on separate LANs improves security

• Load
 – Some LAN segments are more heavily used than others
 – E.g., researchers running experiments get out of hand
 – … can saturate their own segment and not the others
 – Plus, there may be natural locality of communication
 – E.g., traffic between people in the same research group
People Move, and Roles Change

- Organizational changes are frequent
 - E.g., faculty office becomes a grad-student office
 - E.g., graduate student becomes a faculty member

- Physical rewiring is a major pain
 - Requires unplugging the cable from one port
 - … and plugging it into another
 - … and hoping the cable is long enough to reach
 - … and hoping you don’t make a mistake

- Would like to “rewire” the building in software
 - The resulting concept is a Virtual LAN (VLAN)
Example: Two Virtual LANs

Red VLAN and Orange VLAN
Bridges forward traffic as needed
Example: Two Virtual LANs

Red VLAN and Orange VLAN
Switches forward traffic as needed
Making VLANs Work

• Bridges/switches need configuration tables
 – Saying which VLANs are accessible via which interfaces

• Approaches to mapping to VLANs
 – Each interface has a VLAN color
 • Only works if all hosts on same segment belong to same VLAN
 – Each MAC address has a VLAN color
 • Useful when hosts on same segment belong to different VLANs
 • Useful when hosts move from one physical location to another

• Changing the Ethernet header
 – Adding a field for a VLAN tag
 – Implemented on the bridges/switches
 – … but can still interoperate with old Ethernet cards
Moving From Switches to Routers

• Advantages of switches over routers
 – Plug-and-play
 – Fast filtering and forwarding of frames
 – No pronunciation ambiguity (e.g., “rooter” vs. “rowter”)

• Disadvantages of switches over routers
 – Topology is restricted to a spanning tree
 – Large networks require large ARP tables
 – Broadcast storms can cause the network to collapse
Comparing Hubs, Switches, Routers

<table>
<thead>
<tr>
<th></th>
<th>Hub/Repeater</th>
<th>Bridge/Switch</th>
<th>Router</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traffic isolation</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Plug and Play</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Efficient routing</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Cut through</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
Conclusion

• Shutting data from one link to another
 – Bits, frames, packets, …
 – Repeaters/hubs, bridges/switches, routers, …

• Key ideas in switches
 – Cut-through switching
 – Self learning of the switch table
 – Spanning trees
 – Virtual LANs (VLANs)