Social Networks and Ranking

Social Networks

• Represent relationship between entities
 – paper cites paper
 – html page links to html page
 – A supervises B
 – A and B are friends
 – papers share an author
 – A and B are co-workers

Hypertext

• document or part of document links to other parts or other documents
 – construct documents of interrelated pieces
 – relate documents to each other

• pre-dates Web
• Web “killer app.”

How use links to improve information search?

• use structure to compute score
• include more objects to score

• can deal with objects of mixed types
 – images, PDF, …

Scoring using structure

• Ideas
 1. link to object suggests it valuable object
 2. distance between objects in graph represents degree of relatedness reachable by all in 2 links

Pursuing linking and value

• Intuition: when Web page points to another Web page, it confers status/authority/popularity to that page
• Find a measure that captures intuition

• Not just web linking
 – Citations in books, articles
 – Doctors referring to other doctors
Indegree

- Indegree = number of links into a node
- Most obvious idea: higher indegree => better node
- Doesn’t work well
- Need some feedback in system
- Leads us to Page and Brin’s PageRank

PageRank

- Algorithm that gave Google the leap in quality
- Used link structure between pages in fundamental way to score pages
 - link structure centerpiece of scoring
- published

PageRank framework

- Given a directed graph with n nodes
- Assign each node a score that represents its importance in structure
 - Call score PageRank: $pr(node)$

Conferring importance

Core ideas:

- A node should confer some of its importance to the nodes to which it points
 - If a node is important, the nodes it links to should be important
- A node should not transfer more importance than it has

Attempt 1

Refer to nodes by numbers 1, ..., n (arbitrary numbering)

Let t_i denote the number of edges out of node i (outdegree)

Node i transfers $1/t_i$ of its importance on each edge out of it

Define

$$pr_{new}(k) = \sum_{i \text{ with edge from } i \text{ to } k} \frac{pr(i)}{t_i}$$

Iterate until converges

Problems

- Sinks (nodes with no edges out)
- Cyclic behavior

Attempt 2

Random walk model

- Attempt 1 gives movement from node to linked neighbor with probability $1/$outdegree
- Add random jump to any node

$$pr_{new}(k) = \frac{\alpha}{n} + (1-\alpha) \sum_{i \text{ with edge from } i \text{ to } k} \frac{pr(i)}{t_i}$$

- α parameter chosen empirically

- Break cycles
- Escape from sinks
Normalized?

- Would like \(\sum_{i=1}^{k} (pr(k)) = 1 \)
- Consider \(\sum_{i=1}^{k} (pr_{\text{new}}(k)) \)
 \[= \sum_{i=1}^{k} \left(\frac{\alpha}{n} + (1-\alpha) \sum_{i=1}^{k} (pr(i) / t_i) \right) \]
 \[= \frac{\alpha}{n} \sum_{i=1}^{k} (1-\alpha) \sum_{i=1}^{k} (pr(i) / t_i) \]
 \[= \frac{\alpha}{n} + (1-\alpha) \sum_{i=1}^{k} (pr(i) / t_i) \]

Problem for desired normalization

- Have \(\sum_{i=1}^{k} (pr_{\text{new}}(k)) = \alpha + (1-\alpha) \sum_{i=1}^{k} (pr(i) / t_i) \)

- Missing \(pr(i) \) for nodes with no edges from them
 - sink
- Solution: add \(n \) edges out of every sink
 - Edge to every node including self
 - Gives \(1/n \) contribution to every node

Gives desired normalization:
If \(\sum_{i=1}^{k} (pr_{\text{initial}}(k)) = 1 \) then \(\sum_{i=1}^{k} (pr(k)) = 1 \)

Matrix formulation

- Let \(E \) be the \(n \) by \(n \) adjacency matrix
 \[E(i,k) = 1 \text{ if there is an edge from node } i \text{ to node } k \]
 \[= 0 \text{ otherwise} \]
- Define new matrix \(L \):
 For each row \(i \) of \(E \) (\(1 \leq i \leq n \))
 If row \(i \) contains \(t_i > 0 \) ones, \(L(i,k) = (1/ t_i) E(i,k), 1 \leq k \leq n \)
 If row \(i \) contains 0 ones, \(L(i,k) = 1/n, 1 \leq k \leq n \)
- Vector \(pr \) of PageRank values defined by
 \[pr = \left(\frac{\alpha}{n}, \frac{\alpha}{n}, \ldots, \frac{\alpha}{n} \right) \text{ and } \frac{1}{1-\alpha} L^T pr \]
 has a solution representing the steady-state values \(pr(k) \)

Calculation

- Choose \(\alpha \)
 - No single best value
 - Page and Brin originally used \(\alpha = .15 \)
- Simple iterative calculation
 - Initialize \(pr_{\text{initial}}(k) = 1/n \) for each node \(k \)
 \[\sum_{i=1}^{k} (pr_{\text{initial}}(k)) = 1 \]
 \[pr_{\text{new}}(k) = \frac{\alpha}{n} + (1-\alpha) \sum_{i=1}^{k} L(i,k) pr(i) \]
- Converges
 - Has necessary mathematical properties
 - In practice, choose convergence criterion
 - Stops iteration

PageRank Observations

- Can be calculated for any directed graph
- Google calculates on entire Web graph
 \- query independent scoring
- Huge calculation for Web graph
 \- precomputed
 \- 1998 Google published:
 \- 52 iterations for 322 million links
 \- 45 iterations for 161 million links
- PageRank must be combined with query-based scoring for final ranking
 \- Many variations
 \- What Google exactly does secret
 \- Can make some guesses by results

HITS

Hyperlink Induced Topic Search

- Second well-known algorithm
- By Jon Kleinberg while at IBM Almaden Research Center
- Same general goal as PageRank
- Distinguishes 2 kinds of nodes
 \- Hubs: resource pages
 \- Point to many authorities
 \- Authorities: good information pages
 \- Point to many hubs
Mutual reinforcement

- Authority weight node j: $a(j)$
 - Vector of weights a
- Hub weight node j: $h(j)$
 - Vector of weights h

Update:

\[
\begin{align*}
a_{\text{new}}(k) &= \sum \text{i with edge from i to k} \ (h(i)) \\
h_{\text{new}}(k) &= \sum \text{j with edge from k to j} \ (a(j))
\end{align*}
\]

Matrix formulation

Steady state:

\[
\begin{align*}
a &= E^T h \\
h &= Ea
\end{align*}
\]

Interpretation:

- $E^T h(i)$: number nodes point to both node i and node j
 - “Co-citation”
- $E a(j)$: number nodes pointed to by both node i and node j
 - “Bibliographic coupling”

Iterative Calculation

\[
a = h = (1, \ldots, 1)^T
\]

While (not converged) {

\[
\begin{align*}
a_{\text{new}} &= E^T h \\
h_{\text{new}} &= E a \\
a &= a_{\text{new}} / ||a_{\text{new}}|| \quad \text{normalize to unit vector} \\
h &= h_{\text{new}} / ||h_{\text{new}}|| \quad \text{normalize to unit vector}
\end{align*}
\]

Provable convergence by linear algebra

Use of HITS

- Actual use of HITS by IBM people was after find Web pages satisfying query:
 1. Retrieve documents satisfy query and rank by term-based techniques
 2. Keep top c documents: root set of nodes
 - c chosen constant - tunable
 3. Make base set:
 1. Root set
 2. Plus nodes pointed to by nodes of root set
 3. Plus nodes pointing to nodes of root set
 4. Make base graph: base set plus edges from Web graph between these nodes
 5. Apply HITS to base graph

Results using HITS

- Documents ranked by authority score $a(\text{doc})$ and hub score $h(\text{doc})$
 - Authority score primary score for search results
- Heuristics:
 - delete all links between pages in same domain
 - Keep only pre-determined number of pages linking into root set (~200)
- Findings (original paper)
 - Number iterations in original tests ~50
 - most authoritative pages do not contain initial query terms
 - Compare LSI “concepts”

Observations

- HITS can be applied to any directed graph
- Base graph much smaller than Web graph
- Kleinberg identified bad phenomena
 - Topic diffusion: generalizes topic when expand root graph to base graph
 - Want compilers - generalized to programming
PageRank and HITS

• designed independently around 1997
• indicates time was ripe for this kind of analysis
• lots of embellishments by others