Finding near-duplicate documents

Finding duplicate or near duplicate documents

A general paradigm:
1. Define function f capturing contents of each document in one number
 "Hash function", "signature", "fingerprint"
2. Create $<f(doc_i), ID of doc_i>$ pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold

Compare: computing a similarity score on pairs of documents
General paradigm: details

1. Define function f capturing contents of each document in one number
 - “Hash function”, “signature”, “sketch”, “fingerprint”
2. Create <f(doc$_i$), ID of doc$_i$> pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold
 - recognize exact duplicates:
 • threshold = 0
 • examine documents to verify duplicates
 - recognize near-duplicates
 Problem with “small threshold” ?

General paradigm: details

4. Recognize duplicate or near-duplicate documents as having the same f value or f values within a small threshold
 - recognize exact duplicates:
 • threshold = 0
 • examine documents to verify duplicates
 - recognize near-duplicates
 Problem with “small threshold” ?

How deal with

<1, D_1> <1.01, D_2> <1.02, D_3><1.99, D_{100}>

and threshold .01 (using ≤ threshold) ?
“Syntactic clustering”

We will look at this one example:

- “syntactic similarity” versus semantic
 Sequences of words
- Finding near duplicates
- Doc = sequence of words
 Word = Token
- Uses sampling
- Similarity based on shingles
- Does compare documents

Shingles

- A *w*-shingle is a contiguous subsequence of *w* words

 The *w*-shingling of doc D, $S(D, w)$ is the set of unique *w*-shingles of D
Similarity of docs with shingles

For fixed \(w \), resemblance of docs A and B:
\[
r(A, B) = \frac{|S(A) \cap S(B)|}{|S(A) \cup S(B)|}
\]
Jaccard coefficient

• For fixed \(w \), containment of doc A in doc B:
\[
C(A, B) = \frac{|S(A) \cap S(B)|}{|S(A)|}
\]

• For fixed \(w \), resemblance distance between docs A and B:
\[
D(A, B) = 1 - r(A, B)
\]
Is a metric (triangle inequality)

Note we are now comparing documents!

Example

A: “a rose is red a rose is white”
4-shingles:
“a rose is red”
“rose is red a”
“is red a rose”
“red a rose is”
“a rose is white”

B: “a rose is white a rose is red”
4-shingles:
“a rose is white”
“rose is white a”
“is white a rose”
“white a rose is”
“a rose is red”

\[r(A, B) = 0.4 \]
Sample of shingles

Want to estimate \(r \) and/or \(c \)
Do this by calculating approximation on a sample of shingles for fixed \(w \)

- 1-to-1 map each shingle to integer in fixed, large range \(R \)
 - 64-bit hash, \(R=[0, 2^{64}-1] \)
- Let \(\Pi \) be a random permutation from \(R \) to \(R \)
- For any \(S(D) \) define:
 \[
 H(D) = \text{Set of integer hash values} \quad \text{corresponding to shingles in} \quad S(D)
 \]
 \[
 \Pi(D) = \text{Set of permuted values in} \quad H(D)
 \]
 \[
 x(\Pi, D) = \text{smallest integer in} \quad \Pi(D)
 \]

Sketch of shingles

- Let \(\Pi_1, \ldots, \Pi_m \) be \(m \) random permutations \(R \rightarrow R \)
 - text: \(m=20 \)

The sketch of doc \(D \) for \(\Pi_1, \ldots, \Pi_m \) is

\[
\psi(D) = \{ x(\Pi_i, D) \mid 1 \leq i \leq m \}
\]

doc \rightarrow \text{set shingles} \rightarrow \text{set integers}
\rightarrow m \text{ sets permuted integers}
\rightarrow m \text{ smallest integers: one per permutation}

Sketch is a sampling
Approximation of resemblance

Theorem:
For random permutation Π:

$$r(A, B) = P(\ x(\Pi, A) = x(\Pi, B) \)$$

Estimate $P(\ x(\Pi, A) = x(\Pi, B) \)$ as

$$| \psi(A) \cap \psi(B) | \ / \ m$$

recall m is # permutations

Correction

- The following slide is a significant correction to version used in class.
- Version in class used the algorithm in the Broder et. al. paper, which differs slightly from text version followed here.
- Specifically, Broder et. al. use approximation
 $$r(A, B) = \frac{| \psi(A) \cap \psi(B) | \ / \ | \psi(A) \cup \psi(B) | }$$
 with an alternate definition of a sketch ψ.
 Therefore they must compute $| \psi(D_i) | = c_{ti}$ for use in computing
 $$| \psi(D_i) \cup \psi(D_j) | = (c_{ti} + c_{tj} - c_{tij})$$
Algorithm used (text’s version)

1. Calculate sketch \(\psi(D_i) \) for every doc \(D_i \)

2. Calculate \(|\psi(D_i) \cap \psi(D_j)| = ct_{ij} \) for each non-empty intersection:
 i. Produce list of \(<\text{shingle value}, \text{docID}> \) pairs for all shingle values \(x(\Pi_i, D_i) \) in the sketch for each document
 ii. Sort the list by shingle value
 iii. Produce all triples \(<\text{ID}(D_i), \text{ID}(D_j), ct_{ij}> \) for which \(ct_{ij}>0 \)
 This not linear-time for the list of docs for one shingle value

3. Build clusters of similar/almost identical docs
 Degree of similarity depends on threshold …

Clustering

1. Define docs to be similar if approximate resemblance greater than a predetermined threshold \(t \):
 \[\frac{ct_{ij}}{m} > t \]

2. Build graph of docs:
 edge between each pair of similar docs

3. The clusters of similar docs are the connected components in the graph
 – what type clustering?
Clustering

1. Define docs to be similar if approximate resemblance greater than a predetermined threshold t:
 \[c_{ij} / m > t \]
2. Build graph of docs:
 edge between each pair of similar docs
3. The clusters of similar docs are the connected components in the graph
 – single link cluster similarity
 Equivalently:
 • UNION-FIND (text)
 • minimum spanning tree

Paradigm?

• Does compare docs, so not same as paradigm we started with, but uses ideas
• Contents of doc captured by sketch – a set of shingle values
• Similarity of docs scored by count of common shingle values for docs
• Don’t look at all doc pairs, look at all doc pairs that share a shingle value
• Uses clustering by similarity threshold
More efficient: supershingles

“meta-sketch”
1. Sort shingle values of a sketch
2. Compute the shingling of the sequence of shingle values
 • Each original shingle value now a token
 • Gives “supershingles”
3. “meta-sketch” = set of supershingles

One supershingle in common => sequences of shingles in common
Documents with ≥1 supershingle in common => similar

• Each supershingle for a doc. characterizes the doc
• Sort <supershingle, docID> pairs: docs sharing a supershingle are similar => our first paradigm

Pros and Cons of Supershingles

+ Faster
- Problems with small documents – not enough shingles
- Can’t do containment
 Shingles of superset that are not in subset break up sequence of shingle values
Experiments (1996) by Broder et. al.

- 30 million HTML and text docs (150GB) from Web crawl
- 10-word shingles
- 600 million shingles (3GB)
- 40-bit shingle “fingerprints”
- Sketch using 4% shingles (variation of alg. we’ve seen)
- Used count of shingles for similarity
- Using threshold $t = 50\%$, found
 - 3.6 million clusters of 12.3 million docs
 - 2.1 million clusters of identical docs – 5.3 million docs
 - remaining 1.5 million clusters mixture:
 “exact duplicates and similar”