Clustering:
Overview and
K-means algorithm

Informal goal

- Given set of objects and measure of similarity between them, group similar objects together
- What mean by “similar”?
- What is good grouping?
- Computation time / quality tradeoff

General types of clustering

- “Soft” versus “hard” clustering
 - Hard: partition the objects
 - each object in exactly one partition
 - Soft: assign degree to which object in cluster
 - view as probability or score
- flat versus hierarchical clustering
 - hierarchical = clusters within clusters

Applications:

- Many
 - biology
 - astronomy
 - computer aided design of circuits
 - information organization
 - marketing
 - …

Clustering in information search and analysis

- Group information objects
 - ⇒ discover topics
 - other groupings desirable
- Clustering versus classifying
 - classifying: have pre-determined classes with example members
 - clustering:
 - get groups of similar objects
 - added problem of labeling clusters by topic
 - e.g. common terms within cluster of docs.

Example applications in search

- Query evaluation: cluster pruning (§7.1.6)
 - cluster all documents
 - choose representative for each cluster
 - evaluate query w.r.t. cluster reps.
 - evaluate query for docs in cluster(s) having most similar cluster rep.(s)
- Results presentation: labeled clusters
 - cluster only query results
 - e.g. Clusty.com (metasearch)

hard / soft? flat / hier?
Issues

- What attributes represent items for clustering purposes?
- What is measure of similarity between items?
 - General objects and matrix of pairwise similarities
 - Objects with specific properties that allow other specifications of measure
 - Most common:
 - Euclidean distance
 - Cosine similarity
- What is measure of similarity between clusters?

Issues continued

- Cluster goals?
 - Number of clusters?
 - Flat or hierarchical clustering?
 - Cohesiveness of clusters?
- How evaluate cluster results?
 - Relates to measure of closeness between clusters
- Efficiency of clustering algorithms
 - Large data sets => external storage
- Maintain clusters in dynamic setting?
- Clustering methods? - MANY!

General types of clustering methods

- **agglomerative** versus **divisive** algorithms
 - **agglomerative** = bottom-up
 - Build up clusters from single objects
 - **divisive** = top-down
 - Break up cluster containing all objects into smaller clusters
 - Both agglomerative and divisive give hierarchies
 - Hierarchy can be trivial:

 1. (. . .)
 2. (. . .)
 3. (. . .)
 4. (. . .)

General types of clustering methods cont.

- **constructive** versus **iterative improvement**
 - **constructive**: decide in what cluster each object belongs and don’t change
 - Often faster
 - **iterative improvement**: start with a clustering and move objects around to see if can improve clustering
 - Often slower but better

Quality of clustering

- In applications quality of clustering depends on how well solves problem at hand
- Algorithm uses measure of quality that can be optimized, but that may or may not do a good job of capturing application needs.
- Underlying graph-theoretic problems usually NP-complete
 - E.g. graph partitioning
- Usually algorithm not finding optimal clustering

Distance between clusters

Possible definitions:

I. Distance between closest pair of objects with one in each cluster
 - Called single link
 -
 - .

II. Distance between furthest pair of objects, one from each cluster
 - Called complete linkage
 -
 - .

- Measure of similarity between clusters?
Distance between clusters, cont.

Possible definitions:

III. average of pairwise distance between all pairs of objects, one from each
 - more computation

 - Generally no representative point for a cluster;
 - If Euclidean distance
 - centroid
 - bounding box

Vector model:
K-means algorithm

- Well known, well used
- Flat clustering
- Number of clusters picked ahead of time
- Iterative improvement
- Uses notion of centroid
- Typically uses Euclidean distance

K-means overview

- Choose k points among set to cluster
 - Call them k centroids
- For each point not selected, assign it to its closest centroid
 - All assignment give initial clustering
- Until “happy” do:
 - Recompute centroids of clusters
 - New centroids may not be points of original set
 - Reassign all points to closest centroid
 - Updates clusters

An Example
start: choose centroids and cluster

An Example
recompute centroids

An Example
re-cluster around new centroids
An Example
2nd recompute centroids and re-cluster

An Example
3rd (final) recompute and re-cluster

Details for K-means
• Need definition of centroid
 \[c_i = \frac{1}{|C_i|} \sum_{x \in C_i} x \] for i-th cluster \(C_i \) containing objects \(x \)
 notion of \(\text{sum of objects} \) ?
• Need definition of distance to (similarity to) centroid
• Typically vector model with Euclidean distance
• minimizing sum of squared distances of each point to its centroid = Residual Sum of Squares
 \[\text{RSS} = \sum_{i=1}^{K} \sum_{x \in C_i} \text{dist}(c_i, x)^2 \]

K-means performance
• Can prove RSS decreases with each iteration, so converge
• Can achieve local optimum
 – No change in centroids
• Running time depends on how demanding stopping criteria
• Works well in practice
 – speed
 – quality

Time Complexity of K-means
• Let \(t_{\text{dist}} \) be the time to calculate the distance between two objects
• Each iteration time complexity:
 \[O(Kn^2 t_{\text{dist}}) \]
 \(n \) = number of objects
• Bound number of iterations \(I \) giving
 \[O(I^2 K^2 n^2 t_{\text{dist}}) \]
• for m-dimensional vectors:
 \[O(I^2 K^2 n^m) \]
 \(m \) large and centroids not sparse

Space Complexity of K-means
• Store points and centroids
 – vector model: \(O(n + Km) \)
• External algorithm versus internal?
 – store k centroids in memory
 – run through points each iteration
Choosing Initial Centroids

Bad initialization leads to poor results

Optimal Not Optimal

Choosing Initial Centroids

Many people spent much time examining how to choose seeds

- Random
 - Fast and easy, but often poor results
- Run random multiple times, take best
 - Slower, and still no guarantee of results
- Pre-conditioning
 - remove outliers
- Choose seeds algorithmically
 - run hierarchical clustering on sample points and use resulting centroids
 - Works well on small samples and for few initial centroids

K-means weakness

Non-globular clusters

K-means weakness

Wrong number of clusters

K-means weakness

Outliers and empty clusters

Real cases tend to be harder

- Different attributes of the feature vector have vastly different sizes
 - size of star versus color
- Can weight different features
 - how weight greatly affects outcome
- Difficulties can be overcome