6.3 Substring Search

Applications

- Parsers.
- Spam filters.
- Digital libraries.
- Screen scrapers.
- Word processors.
- Web search engines.
- Electronic surveillance.
- Natural language processing.
- Computational molecular biology.
- FBI’s Digital Collection System 3000.
- Feature detection in digitized images.
- ...
Application: Electronic surveillance

Need to monitor all internet traffic (security)

No way! (privacy)

Well, we're mainly interested in "ATTACK AT DAWN"

OK. Build a machine that just looks for that

"ATTACK AT DAWN" substring search machine

"ATTACK AT DAWN" substring search machine found

Application: Screen scraping

Goal. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of pattern Last Trade:

Screen scraping: Java implementation

Java library. The indexOf() method in Java's string library returns the index of the first occurrence of a given string, starting at a given offset.

```java
public class StockQuote
{
    public static void main(String[] args)
    {
        String name = "http://finance.yahoo.com/q?s=";
        In in = new In(name + args[0]);
        String text = in.readAll();
        int start = text.indexOf("Last Trade:", 0);
        int from = text.indexOf("<b>", start);
        int to = text.indexOf("</b>", from);
        String price = text.substring(from + 3, to);
        StdOut.println(price);
    }
}
```

% java StockQuote goog
256.44

% java StockQuote msft
19.68

brute force

Knuth-Morris-Pratt

Boyer-Moore

Rabin-Karp
Brute-force substring search

Check for pattern starting at each text position.

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>i+j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

entries in black match the text

entries in red are mismatches

entries in gray are for reference only

\[
\begin{align*}
 & A \quad B \quad C \\
 & D \quad A \quad B \quad R \quad A \\
 & A \quad B \quad R \quad A \\
 & A \quad B \quad R \quad A \\
 & A \quad B \quad R \quad A
\end{align*}
\]

```
public static int search(char[] pat, char[] txt)
{
  int M = pat.length;
  int N = txt.length;
  for (int i = 0; i < N - M; i++)
  {
    int j;
    for (j = 0; j < M; j++)
      if (txt[i+j] != pat[j])
        break;
    if (j == M) return i;
  }
  return N;
}
```

Worst case. \(\sim MN \) char compares.

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

```
public static int search(char[] pat, char[] txt){
  int M = pat.length;
  int N = txt.length;
  for (int i = 0; i < N - M; i++)
  {
    int j;
    for (j = 0; j < M; j++)
      if (txt[i+j] != pat[j])
        break;
    if (j == M) return i;
  }
  return N;  // not found
}
```

Brute-force substring search: worst case

Brute-force algorithm can be slow if text and pattern are repetitive.

```
<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>i+j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

Brute-force substring search (worst case)
```

Backup

In typical applications, we want to avoid backup in text stream.
- treat input as stream of data
- abstract model: `StdIn`

Backup

In typical applications, we want to avoid backup in text stream.

- treat input as stream of data
- abstract model: `StdIn`

Brute-force algorithm needs backup for every mismatch

```
  A \quad A
  A \quad A \quad A \\
  A \quad A \\
  A \quad A \\
  A \\
  A 
```

```
  A \quad A \quad A \\
  A \quad A \\
  A \\
  A
```

Approach 1: Maintain buffer of size \(M \) (build backup into `StdIn`)
Other approaches: Stay tuned.
Brute-force substring search: alternate implementation

Same sequence of char compares as previous implementation.
• i points to end of sequence of already-matched chars in text.
• j stores number of already-matched chars (end of sequence in pattern).

```java
public static int search(char[] pat, char[] txt) {
    int j, M = pat.length;
    int i, N = txt.length;
    for (i = 0, j = 0; i < N && j < M; i++) {
        if (txt[i] == pat[j]) j++;
        else { i -= j; j = 0; }
    }
    if (j == M) return i - M;
    else return N;
}
```

Algorithmic challenges in substring search

Brute-force is often not good enough.

Theoretical challenge. Linear-time guarantee.

Practical challenge. Avoid backup in text stream.

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BAAAAAAAAA.
• Suppose we match 5 chars in pattern, with mismatch on 6th char.
• We know previous 6 chars in text are BAAAAAB.
• Don’t need to back up text pointer!

Remark. It is always possible to avoid backup.
Q. What pattern char do we compare to the next text char on **match**?
A. Easy: the next one.

Q. Which pattern char should we compare with the next text char?
A. Check each position, working from left to right.

Ex. Build table for **aaaac**.

<table>
<thead>
<tr>
<th>j</th>
<th>pat[j]</th>
<th>dfa[c][j]</th>
<th>state (pattern index)</th>
<th>text (pattern index)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>AAAAC</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>A</td>
<td>ABABAC</td>
<td>ABABAC</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>ABABAC</td>
<td>ABABAC</td>
<td>ABABAC</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>A</td>
<td>ABABAC</td>
<td>ABABAC</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>A</td>
<td>ABABAC</td>
<td>ABABAC</td>
</tr>
</tbody>
</table>

Total cost: O(MR) char compares (stay tuned for a better method).
Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.
• Finite number of states (including start and halt).
• Exactly one transition for each input symbol.
• Accept if sequence of transitions leads to halt state.

Knuth-Morris Pratt algorithm: Build machine for pattern, simulate it on text.

KMP search: Java implementation

Key differences from brute-force implementation.
• Text pointer i never decrements.
• Need to precompute \(dfa[i][j] \) table from pattern.

```
public int search(int[] txt)
{
    int i, j, N = txt.length;
    for (i = 0, j = 0; i < N && j < M; i++)
        j = dfa[txt[i]][j];
    if (j == M) return i - M;
    else        return N;
}
```

KMP substring search: trace

Trace of KMP substring search (DFA simulation) for \(A B A B A C \)

DFA corresponding to the string \(A B A B A C \)

If in state \(j \) reading char \(c \):
- halt if \(j \) is \(6 \)
- else move to state \(dfa[c][j] \)

mismatch:
- set \(j \) to \(dfa[txt[i]][j] \)
 implies pattern shift to align \(pat[j] \) with \(txt[i+1] \)

match:
- set \(j \) to \(dfa[txt[i]][j] = j+1 \)
Efficiently constructing the DFA for KMP substring search

Q1. What state X would the DFA be in if it were restarted to correspond to shifting the pattern one position to the right?

A1. Use the (partially constructed) DFA to find X!

A. A A A B B B B C C C
B. A B A B A
C. 0 1 2 3

Q2. Why is that relevant?

A2. We want the same transitions for the next state on mismatch

X = dfa[pat[j]][X];

A2. (continued), and a different transition (to j+1) on match

dfa[pat[j]][j] = j+1

Constructing the DFA for KMP substring search: example

DFA simulations to compute restart states for A, B, A, B, A, C

Constructing the DFA for KMP substring search

Q1. What state X would the DFA be in if it were restarted to correspond to shifting the pattern one position to the right?

A1. Use the (partially constructed) DFA to find X!

A. A A A B B B B C C C
B. A B A B A
C. 0 1 2 3

Q2. Why is that relevant?

A2. We want the same transitions for the next state on mismatch

X = dfa[pat[j]][X];

A2. (continued), and a different transition (to j+1) on match

dfa[pat[j]][j] = j+1

Important note:

- no need to restart DFA
- remember last restart state in X
- use DFA to update X

X = dfa[pat[j]][X]
Constructing the DFA for KMP substring search: example

For each j:
- Copy $dfa[X][j]$ to $dfa[j][j]$ for mismatch case.
- Set $dfa[pat[j]][j]$ to $j+1$ for match case.
- Update X.

```java
public KMP(int R, char[] pat) {
    this.pat = pat;
    M = pat.length;
    dfa = new int[R][M];
    dfa[pat[0]][0] = 1;
    for (int X = 0, j = 1; j < M; j++) {
        for (int c = 0; c < R; c++)
            dfa[c][j] = dfa[c][X];
        dfa[pat[j]][j] = j+1;
        X = dfa[pat[j]][X];
    }
}
```

KMP substring search analysis

Proposition. KMP substring search accesses no more than $M + N$ chars to search for a pattern of length M in a text of length N.

Pf. We access each pattern char once when construction DFA, and we access each text char once (in the worst case) when simulating the DFA on given text.

Remark. Takes time and space proportional to RM to build $dfa[] []$, but with cleverness, can reduce time and space to M.

Knuth-Morris-Pratt: brief history

Brief history.
- Inspired by esoteric theorem of Cook.
- Discovered in 1976 independently by two theoreticians and a hacker.
 - Knuth: discovered linear-time algorithm
 - Pratt: made running time independent of alphabet
 - Morris: trying to build a text editor
- Theory meets practice.

Stephen Cook Don Knuth Jim Morris Vaughan Pratt
Boyer-Moore: mismatched character heuristic

Intuition.
- Scan characters in pattern from right to left.
- Can skip M text chars when finding one not in the pattern.

Boyer-Moore: Java implementation

```java
public int search(char[] txt)
{
    int N = txt.length;
    int M = pat.length;
    int skip;
    for (int i = 0; i <= N-M; i += skip)
    {
        skip = 0;
        for (int j = M-1; j >= 0; j--)
            if (pat[j] != txt[i+j])
                skip = Math.max(1, j - right[txt[i+j]]);
        if (skip == 0) return i;
    }
    return N;
}
```

Q. How much to skip?
A. Compute $right[c] =$ rightmost occurrence of character c in $pat[]$.

```java
int[] right = new int[R];
for (int c = 0; c < R; c++)
    right[c] = -1;
for (int j = 0; j < M; j++)
    right[pat[j]] = j;
```
Boyer-Moore: analysis

Property. Substring search with the Boyer-Moore mismatched character heuristic takes about \(\frac{N}{M} \) steps to search for a pattern of length \(M \) in a text of length \(N \).

Worst-case. Can be as bad as \(MN \).

Boyer-Moore variant. Can improve worst case to \(M + N \) by adding a KMP-like rule to guard against repetitive patterns.

- Used in Unix, emacs.

Rabin-Karp fingerprint search

Basic idea.
- Compute a hash of \(\text{pat}[0..M) \).
- Compute a hash of \(\text{txt}[i..M+i) \) for each \(i \).
- If pattern hash = text substring hash, check for a match.

Modular hash function. Using the notation \(t_i \) for \(\text{txt}[i] \), we wish to compute

\[
 x_i = t_i R^{M-1} + t_{i+1} R^{M-2} + \ldots + t_{i+M-1} R^0 \pmod{Q}
\]

Intuition. \(M \)-digit, base-\(R \) integer, modulo \(Q \).

Horner’s method. Linear-time method to evaluate degree-\(M \) polynomial.

```java
// Compute hash for key[0..M-1]
private int hash(char[] key, int M) {
    int h = 0;
    for (int j = 0; j < M; j++)
        h = (R * h + key[j]) % Q;
    return h;
}
```
Efficiently computing the hash function

Challenge. How to efficiently compute x_{i+1} given that we know x_i.

$$
\begin{align*}
x_i &= t_i R^{M-1} + t_{i+1} R^{M-2} + \ldots + t_{i+M-1} R^0 \\
x_{i+1} &= t_{i+1} R^M + t_{i+2} R^{M-1} + \ldots + t_{i+M} R^1
\end{align*}
$$

Key observation. Can do it in constant time!

$$x_{i+1} = (x_i - t_i R^{M-1}) R + t_{i+1}$$

Rabin-Karp: Java implementation

```java
public class RabinKarp {
    private char[] pat;      // the pattern
    private int patHash;     // pattern hash value
    private int M;           // pattern length
    private int Q = 8355967; // modulus
    private int R;           // radix
    private int RM;          // R^(M-1) % Q

    public RabinKarp(int R, char[] pat) {
        this.R = R;
        this.pat = pat;
        this.M = pat.length;
        RM = 1;
        for (int i = 1; i <= M-1; i++)
            RM = (R * RM) % Q;
        patHash = hash(pat);
    }

    private int hash(char[] key) {
        /* as before */
    }

    public int search(char[] txt) {
        /* see next slide */
    }
}
```

Rabin-Karp substring search example

```java
public int search(char[] txt) {
    int N = txt.length;
    if (N < M) return N;
    int offset = hashSearch(txt);
    if (offset == N) return N;
    for (int i = 0; i < M; i++)
        if (pat[i] != txt[offset + i])
            return N;
    return offset;
}
```

```java
private int hashSearch(char[] txt) {
    int N = txt.length;
    int txtHash = hash(txt);
    if (patHash == txtHash) return 0;
    for (int i = M; i < N; i++) {
        txtHash = (txtHash + Q - RM*txt[i-M] % Q) % Q;
        txtHash = (txtHash*R + txt[i]) % Q;
        if (patHash == txtHash) return i - M + 1;
    }
    return N;
}
```

Rabin-Karp: Java implementation (continued)

```java
public int search(char[] txt) {
    int N = txt.length;
    if (N < M) return N;
    int offset = hashSearch(txt);
    if (offset == N) return N;
    for (int i = 0; i < M; i++)
        if (pat[i] != txt[offset + i])
            return N;
    return offset;
}
```

Rabin-Karp substring search example

```plaintext

<table>
<thead>
<tr>
<th>txt[]</th>
<th>0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 4 1 5 9 2 6 5 1 5 8 7 9 3</td>
<td></td>
</tr>
<tr>
<td>0 3 % 997 = 3</td>
<td></td>
</tr>
<tr>
<td>1 3 1 % 997 = (3*10 + 1) % 997 = 31</td>
<td></td>
</tr>
<tr>
<td>2 1 4 % 997 = (31*10 + 4) % 997 = 314</td>
<td></td>
</tr>
<tr>
<td>3 1 4 1 % 997 = (314*10 + 1) % 997 = 150</td>
<td></td>
</tr>
<tr>
<td>4 1 4 1 5 % 997 = (150*10 + 5) % 997 = 508</td>
<td></td>
</tr>
<tr>
<td>5 1 4 1 5 9 % 997 = ((508 + 3*997 - 310)*10 + 9) % 997 = 201</td>
<td></td>
</tr>
<tr>
<td>6 4 1 5 9 2 % 997 = ((201 + 1*997 - 310)*10 + 2) % 997 = 715</td>
<td></td>
</tr>
<tr>
<td>7 1 5 9 2 6 % 997 = ((715 + 4*997 - 310)*10 + 6) % 997 = 971</td>
<td></td>
</tr>
<tr>
<td>8 5 9 2 6 5 % 997 = ((971 + 5*997 - 310)*10 + 5) % 997 = 442</td>
<td></td>
</tr>
<tr>
<td>9 9 2 6 5 3 % 997 = ((442 + 5*997 - 310)*10 + 3) % 997 = 929</td>
<td></td>
</tr>
<tr>
<td>10 9 2 6 5 3 % 997 = ((929 + 9*997 - 310)*10 + 5) % 997 = 913</td>
<td></td>
</tr>
</tbody>
</table>
```
Rabin-Karp analysis

Property 4. Rabin-Karp substring search is extremely likely to be linear-time.

Worst-case. Takes time proportional to MN.
• In worst case, all substrings hash to same value.
• Then, need to check for match at each text position.

Theory. If Q is a sufficiently large random prime (about \(MN^2\)), then probability of a false collision is about \(1/N\) = expected running time is linear.

Practice. Choose Q to avoid integer overflow. Under reasonable assumptions, probability of a collision is about \(1/Q\) = linear in practice.

Rabin-Karp fingerprint search

Advantages.
• Extends to 2D patterns.
• Extends to finding multiple patterns.

Disadvantages.
• Arithmetic ops slower than char compares.
• No worst-case guarantee.

Q. How would you extend Rabin-Karp to efficiently search for any one of \(P\) possible patterns in a text of length \(N\)?

Substring search cost summary

Cost of searching for an M-character pattern in an N-character text.

<table>
<thead>
<tr>
<th>Algorithm (data structure)</th>
<th>Operation count</th>
<th>Backup in input?</th>
<th>Space grows with input?</th>
</tr>
</thead>
<tbody>
<tr>
<td>brute force</td>
<td>(MN)</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>Knuth-Morris-Pratt (full DFA)</td>
<td>2(N)</td>
<td>no</td>
<td>MR</td>
</tr>
<tr>
<td>Knuth-Morris-Pratt (mismatch transitions only)</td>
<td>3(N)</td>
<td>no</td>
<td>(M)</td>
</tr>
<tr>
<td>Boyer-Moore</td>
<td>3(N)</td>
<td>yes</td>
<td>(R)</td>
</tr>
<tr>
<td>Boyer-Moore (mismatched character heuristic only)</td>
<td>(MN)</td>
<td>yes</td>
<td>(R)</td>
</tr>
<tr>
<td>Rabin-Karp†</td>
<td>7(N)†</td>
<td>no</td>
<td>1</td>
</tr>
</tbody>
</table>

† probabilistic guarantee, with uniform hash function