Clustering Algorithms: Divisive hierarchical and flat

Hierarchical Divisive: Template

1. Put all objects in one cluster
2. Repeat until all clusters are singletons
 a) choose a cluster to split
 • what criterion?
 b) replace the chosen cluster with the sub-clusters
 • split into how many?
 • how split?
 • “reversing” agglomerative => split in two
 • cutting operation: cut-based measures seem to be a natural choice.
 – focus on similarity across cut - lost similarity
 • not necessary to use a cut-based measure
An Example: 1st cut

An Example: 2nd cut
An Example: stop at 3 clusters

Compare k-means result
Cut-based optimization

- weaken the connection between objects in different clusters *rather than* strengthening connection between objects within a cluster

- Are many cut-based measures
- We will look at one

Inter / Intra cluster costs

Given:
- \(U = \{v_1, \ldots, v_n\} \), the set of all objects
- A partitioning clustering \(C_1, C_2, \ldots, C_k \) of the objects: \(U = \bigcup_{i=1, \ldots, k} C_i \).

Define:
- \(\text{cutcost}(C_p) = \sum_{v_i \in C_p, v_j \in U-C_p} \text{sim}(v_i, v_j) \).
- \(\text{intracost}(C_p) = \sum_{v_i, v_j \in C_p} \text{sim}(v_i, v_j) \).
Cost of a clustering

cost \((C_1, \ldots, C_k) = \sum_{p=1}^{k} \frac{\text{cutcost} (C_p)}{\text{intracost} (C_p)}\)

- contribution each cluster: ratio external similarity to internal similarity

min-max cut optimization

Find clustering \(C_1, \ldots, C_k\) that minimizes cost\((C_1, \ldots, C_k)\)

Simple example

- six objects
- similarity 1 if edge shown
- similarity 0 otherwise
- choice 1: cost UNDEFINED + 1/4
- choice 2: cost 1/1 + 1/3 = 4/3
- choice 3: cost 1/2 + 1/2 = 1 *prefer balance
Iterative Improvement Algorithm

1. Choose initial partition C_1, \ldots, C_k
2. repeat {
 unlock all vertices
 repeat {
 choose some C_i at random
 choose an unlocked vertex v_j in C_i
 move v_j to that cluster, if any, such that move
 gives maximum decrease in cost
 lock vertex v_j
 } until all vertices locked
} until converge

Observations on algorithm

- heuristic
- uses randomness
- convergence usually improvement < some chosen threshold between outer loop iterations
- vertex “locking” insures that all vertices are examined before examining any vertex twice
- there are many variations of algorithm
- can use at each division of hierarchical divisive algorithm with $k=2$
 - more computation than an agglomerative merge
Compare to k-means

• Similarities:
 – number of clusters, k, is chosen in advance
 – an initial clustering is chosen (possibly at random)
 – iterative improvement is used to improve clustering

• Important difference:
 – min-max cut algorithm minimizes a cut-based cost
 – k-means maximizes only similarity within a cluster
 • ignores cost of cuts

Another method: Spectral clustering

Brief overview
Given:
• k: number of clusters
• nxn object-object sim. matrix S of non-neg. values
Compute:
1. Laplacian matrix L from S (straightforward computation)
 – are variations in def. Laplacian
2. eigenvectors corresponding to k smallest eigenvalues
3. use eigenvectors to define clusters
 – variety of ways to do this
 – all involve another, simpler, clustering
 • e.g. points on a line
Spectral clustering optimizes a cut measure
similar to min-max cut
Hierarchical divisive revisited

• can use one of cut-based algorithms to split a cluster
• how choose cluster to split next?
 – if building entire tree, doesn’t matter
 – if stopping a certain point, choose next cluster based on measure optimizing
 • e.g. for min-max cut, choose C_i with largest $\text{cutcost}(C_i) / \text{intracost}(C_i)$

External measures

• comparing two clusterings as to similarity
• if one clustering “correct”, one clustering by an algorithm, measures how well algorithm doing
one measure motivated by F-score in IR: combining *precision* and *recall*

- Given:
 a “correct” clustering \(S_1, \ldots, S_k \) of the objects (\(\Xi \) relevant)
 a computed clustering \(C_1, \ldots, C_k \) of the objects (\(\Xi \) retrieved)

- Define:
 precision of \(C_x \) w.r.t \(S_q \):
 \[p(x,q) = \frac{|S_q \cap C_x|}{|C_x|} \]
 fraction of computed cluster that is “correct”

 recall of \(C_x \) w.r.t \(S_q \):
 \[r(x,q) = \frac{|S_q \cap C_x|}{|S_q|} \]
 fraction of a “correct” cluster found in a computed cluster

\[
\text{F-score of } C_x \text{ w.r.t } S_q = F(x,q) = \frac{2r(x,q) \cdot p(x,q)}{r(x,q) + p(x,q)}
\]
combine precision and recall (Harmonic mean)

\[
\text{F-score of } \{C_1, C_2, \ldots, C_k\} \text{ w.r.t } S_q = F(q) = \max_{x = 1, \ldots, k} F(x,q)
\]

\[
\text{F-score of } \{C_1, C_2, \ldots, C_k\} \text{ w.r.t } \{S_1, S_2, \ldots, S_k\} = \sum_{q = 1, \ldots, k} \left(\frac{|S_q|}{n} \right) * F(q)
\]
weighted average of best scores over all correct clusters
always \(\leq 1 \)

- Perfect match of computed clusters to correct clusters gives Fscore of 1