Clustering Algorithms: Hierarchical and variations

General agglomerative

• Uses any computable cluster similarity measure \(\text{sim}(C_i, C_j) \)
• For \(n \) objects \(v_1, \ldots, v_n \), assign each to a singleton cluster \(C_i = \{v_i\} \).
• repeat {
 – identify two most similar clusters \(C_j \) and \(C_k \) (could be ties – chose one pair)
 – delete \(C_j \) and \(C_k \) and add \((C_j \cup C_k) \) to the set of clusters
} until only one cluster
• Dendrograms diagram the sequence of cluster merges.
Agglomerative: remarks

- *Introduction to IR* discusses in great detail for cluster similarity:
 - single-link,
 - complete-link,
 - average of all pairs
 - centroid
- Uses priority queues to get time complexity
 \[O(n^2 \log n \times (\text{time to compute cluster similarity})) \]
 - one priority queue for each cluster: contains similarities to all other clusters plus bookkeeping info
 - time complexity more precisely:
 \[O(n^2 \times (\text{time to compute object-object similarity}) + (n^2 \log n \times \text{(time to compute } \text{sim(cluster}_z, \text{ cluster}_j U \text{ cluster}_k) \text{ if know } \text{sim(cluster}_z, \text{ cluster}_j) \text{ and } \text{sim(cluster}_z, \text{ cluster}_k) \}) \]
- Problem with priority queue?

Single pass agglomerative-like

Given arbitrary order of objects to cluster: \(v_1, \ldots, v_n \)
and threshold \(\tau \)
Put \(v_1 \) in cluster \(C_1 \) by itself
For \(i = 2 \) to \(n \) {
 for all existing clusters \(C_j \)
 calculate \(\text{sim}(v_i, C_j) \);
 record most similar cluster to \(v_i \) as \(C_{\text{max}(i)} \)
 if \(\text{sim}(v_i, C_{\text{max}(i)}) > \tau \) add \(v_i \) to \(C_{\text{max}(i)} \)
 else create new cluster \{\(v_i \}\)
}
Issues

• put v_i in cluster after seeing only $v_1, \ldots v_{i-1}$
• not hierarchical
• tends to produce large clusters
 – depends on τ
• depends on order of v_i
Alternate perspective for single-link algorithm

• Build a **minimum spanning tree (MST)** - graph alg.
 – edge weights are pair-wise similarities
 – since in terms of similarities, not distances, really want maximum spanning tree
• For some threshold τ, remove all edges of similarity $< \tau$
• Tree falls into pieces \Rightarrow clusters

• Not hierarchical, but get hierarchy for sequence of τ