1 Knapsack Problem

Definition 1 (Knapsack Problem) Given a set \(W = \{w_1, \ldots, w_n\} \) of positive integer numbers (weights of objects) and a positive number \(C \) (knapsack capacity) determine if there exists a subset \(S \) of \(W \) with sum of its elements equal to \(C \):

\[
\sum_{w \in S} w = C.
\]

Definition 2 (Knapsack Language) The Knapsack Language is the set of pairs \((W, C) \), for which there exists a solution to the Knapsack Problem.

Remark: Can you encode a set of binary strings in one binary string?

Problem 1 Design an algorithm solving the Knapsack Problem in time polynomial in \(C \cdot |W| \).

Hint: Use dynamic programming: For each \(1 \leq k \leq n \) consider the following set:

\[
C_k = \left\{ \sum_{w \in S} w : S \subseteq \{w_1, \ldots, w_k\} \right\}.
\]

How can we construct \(C_{k+1} \) given \(C_k \)?

Definition 3 We say that a set of binary strings \(A \subseteq \{0, 1\}^* \) is Karp-reducible to a set \(B \subseteq \{0, 1\}^* \) (and denote this by \(A \leq_K B \)) if there exists a polynomial time algorithm \(M : \{0, 1\}^* \rightarrow \{0, 1\}^* \) such that for all \(x \),

\[
x \in A \text{ if and only if } M(x) \in B.
\]

Problem 2 Compare Karp-reduction with \(m \)-reduction. What is the main difference? Can you give two sets between which you have an \(m \) reduction, but don’t expect a Karp-reduction to exist? Why?

Problem 3 Prove that the Knapsack Language is in \(\mathcal{NP} \). Show that the Knapsack Language is \(\mathcal{NP} \)-complete by reducing the Circuit–SAT to it.

Remark: A similar problem will be discussed in class.

Hint: Assign a boolean variable to each input bit and each gate. For each variable construct a number and add it to the set \(W \). Then every subset \(S \) of \(W \) corresponds to an assignment of boolean values to the variables: a number is in \(S \) if and only if the corresponding boolean variable is true.
2 Circuit SAT and Three Coloring

Definition 4 (3-COL Language) The Three Coloring Language (3-COL) is the set of graphs that are three colorable.

Recall that a graph \(G = (V, E) \) is three colorable if there exists a coloring of the vertices of the graph in three colors such that the colors of adjacent vertices are distinct.

Definition 5 (Circuit–SAT Language) The Circuit–SAT Language is the set of satisfiable circuits (i.e., those circuits \(C \) for which there exists an input \(x \) such that \(C(x) = 1 \)).

3 Oracles and Self Reducibility

In this section we will see that for many sets \(L \), solving the decision problem (answering whether \(x \in L \)) implies an efficient solution for the search problem, of finding an NP-witness for \(x \).

Assume that there exists a powerful oracle that answers the question whether a string \(x \) belongs to \(L \). We can send requests to the oracle using a special query “Is \(x \) in \(L \)?”. If \(x \in L \) the oracle returns 1 (or true), otherwise 0 (or false).

Problem 4 1. Given an oracle for Circuit–SAT design a polynomial time algorithm that finds a witness (namely a satisfying assignment if one exists) for Circuit–SAT problem.

 Hint: Try to determine the bits of a satisfying assignment one at a time, using the given oracle on the appropriate restricted circuits.

2. Given an oracle for 3-COL design a polynomial time algorithm that finds a three coloring of a graph.

 Hint: One possible way is to determine the colors of vertices one at a time. To impose a partial coloring condition one can add a triangle to the graph, and connect subsets of its vertices to specific vertices to impose their color.