3D Object Representations

- Raw data
 - Point cloud
 - Range image
 - Polygon soup

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Implicit Surfaces

- Points satisfying: \(F(x,y,z) = 0 \)

- Example: quadric
 \(f(x,y,z)=ax^2+by^2+cz^2+2dxy+2eyz+2fxz+2gx+2hy+2jz +k \)

- Common quadric surfaces:
 - Sphere
 - Ellipsoid
 - Torus
 - Paraboloid
 - Hyperboloid

Advantages:
- Very concise
- Guaranteed validity
- Easy to test if point is on surface
- Easy to intersect two surfaces

Disadvantages:
- Hard to describe complex shapes
- Hard to enumerate points on surface
- Hard to draw
3D Object Representations

• Raw data
 - Point cloud
 - Range image
 - Polygon soup

• Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

• Solids
 - Voxel
 - BSP tree
 - CSG
 - Sweep

• High-level structures
 - Scene graph
 - Skeleton
 - Application specific

Solid Modeling

• Represent solid interiors of objects
 - Surface may not be described explicitly

Motivation 1

• Some acquisition methods generate solids
 - Example: CAT scan

Motivation 2

• Some applications require solids
 - Example: CAD/CAM

Motivation 3

• Some algorithms require solids
 - Example: ray tracing with refraction

Solid Modeling Representations

• What makes a good solid representation?
 - Accurate
 - Concise
 - Affine invariant
 - Easy acquisition
 - Guaranteed validity
 - Efficient boolean operations
 - Efficient display
Solid Modeling Representations

- Voxels
- Quadtrees & Octrees
- Binary space partitions
- Constructive solid geometry

Voxels

- Partition space into uniform grid
 - Grid cells are called voxels (like pixels)
- Store properties of solid object with each voxel
 - Occupancy
 - Color
 - Density
 - Temperature
 - etc.

Voxel Acquisition

- Scanning devices
 - MRI
 - CAT
- Simulation
 - FEM

Voxel Storage

- \(O(n^3) \) storage for \(n \times n \times n \) grid
 - 1 billion voxels for \(1000 \times 1000 \times 1000 \)

Voxel Boolean Operations

- Compare objects voxel by voxel
 - Trivial

\[\bigcup \quad \bigcap \]
Voxel Display
• Isosurface rendering
 ○ Render surfaces bounding volumetric regions of constant value (e.g., density)

Voxel Display
• Slicing
 ○ Draw 2D image resulting from intersecting voxels with a plane

Voxel Display
• Ray casting
 ○ Integrate density along rays through pixels

Voxels
• Advantages
 ○ Simple, intuitive, unambiguous
 ○ Same complexity for all objects
 ○ Natural acquisition for some applications
 ○ Trivial boolean operations

Voxels
• Disadvantages
 ○ Approximate
 ○ Not affine invariant
 ○ Large storage requirements
 ○ Expensive display

Solid Modeling Representations
• Voxels
• Quadtrees & Octrees
• Binary space partitions
• Constructive solid geometry

Quadtrees & Octrees
• Refine resolution of voxels hierarchically
 ○ More concise and efficient for non-uniform objects
Quadtree Boolean Operations

\[A \cap B \]

\[A \cup B \]

Quadtree Display

- Extend voxel methods
 - Slicing
 - Isosurface extraction
 - Ray casting

Finding neighbor cell requires traversal of hierarchy \(O(1) \)

Solid Modeling Representations

- Voxels
- Quadtrees & Octrees
- Binary space partitions
- Constructive solid geometry

Binary Space Partitions (BSPs)

- Recursive partition of space by planes
 - Mark leaf cells as inside or outside object

BSP Fundamentals

Single geometric operation
Partition a convex region by a hyperplane

Single combinatorial operation
Two child nodes added as leaf nodes

BSP is a Search Structure

Exploit hierarchy of convex regions
Regions decrease in size along any tree path
Regions converge in the limit to the surface
BSP Acquisition

- Must construct a “good” binary search structure
 - Efficiency comes from logarithmic tree depth

BSP Boolean Operations

- Divide and conquer
 - Each node V corresponds to a convex region containing all geometry in the subtree rooted at V
 - No intersection with bounding volume of V means no intersection with subtree rooted at V
 - Do detail work only in regions required
 - Boolean operations grow with $O(\log n)$ if “good” tree

BSP Display

- Visibility ordering
 - Determine on which side of plane the viewer lies
 - near-subtree -> polygons on split -> far-subtree

Solid Modeling Representations

- Voxels
- Quadtrees & Octrees
- Binary space partitions
- Constructive solid geometry

Constructive Solid Geometry (CSG)

- Represent solid object as hierarchy of boolean operations
 - Union
 - Intersection
 - Difference

CSG Acquisition

- Interactive modeling programs
 - CAD/CAM
CSG Boolean Operations
- Create a new CSG node joining subtrees
 - Union
 - Intersection
 - Difference

CSG Display & Analysis
- Ray casting

Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Voxels</th>
<th>Octree</th>
<th>BSP</th>
<th>CSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>Some</td>
</tr>
<tr>
<td>Concise</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Affine invariant</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Easy acquisition</td>
<td>Some</td>
<td>Some</td>
<td>No</td>
<td>Some</td>
</tr>
<tr>
<td>Guaranteed validity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Efficient boolean operations</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Efficient display</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Taxonomy of 3D Representations

Discrete
Continuous
Voxels
Combinatorial
Topological
Set Membership
Parametric
Implicit
Mesh
Subdivision
BSP Tree
Cell Complex
Bezier
B-Spline
Algebraic