Shortest Paths

Digraph with edge weights (costs, distances)

Shortest path from s to t: path of minimum total wt.

Problems:

single pair: given s, t, find a shortest path from s to t

single source: given s, find shortest paths from s to all reachable vertices

all pairs: find shortest paths between all pairs

Cases:

acyclic

no negative wts

general

(planar, etc.)
Properties:

If a shortest path from s to t iff there is no negative (total wt.) cycle on a path from s to t.

If there is no such cycle, there is a shortest path that is simple (no repeated vertex).

If no neg cycle reachable from s, then if shortest path tree rooted at s, contains all vertices reachable from s, all tree paths are shortest paths in graph.

New goal: find a negative cycle or construct a shortest path tree.

(single-source problem is central)
Given a spanning tree \(T\) rooted at \(s\),
\[d(v) = \text{tree wt from } s \text{ to } v, \]
is \(T\) a shortest path tree?

Yes, iff there is no \((v,w)\) with \(d(v) + c(v,w) < d(w)\).

Edge relaxation algorithm to find a shortest path tree:
\[d(s) = 0, \quad d(v) = \infty \text{ for } v \neq s \]

while exists edge \((v,w)\) with \(d(v) + c(v,w) < d(w)\)
\[\text{do} \{ d(w) = d(v) + c(v,w); \quad p(w) = v \} \]
d\(v\) is always the wt of some \(s-v\) path

if algorithm stops and \(p\) defines a tree,
must be a shortest path tree

stops iff no neg cycle

(alg maintains \(d(w) \geq d(v) + c(v,w)\) if \(v = p(w)\))
Suppose \(T \) not a \(sp \) tree. Let \(x \) be such that \(d(x) > s-x \) distance. Let \(P \) be a shortest path from \(s \) to \(x \), \(d'(v) = P \)-distance from \(s \).

Let \((v, w) \) be first edge along \(P \) such that \(d'(v) < d(w) \).

Then \(d(v) + c(v, w) = d'(v) + c(v, w) = d'(v) < d(w) \).

(This gives the hard direction of \(sp \) tree test.)

Suppose edge relaxation algorithm creates a cycle.

Then it must be a negative cycle.

\[
d(v) + c(v, w) < d(w) \Rightarrow d(v) - d(w) + c(v, w) < 0
\]

Sum around cycle: \[
\sum_{i=1}^{k} (d(v_i) - d(v_{i+1})) + c(v_{i+1}, v_i) < 0
\]
Labeling and scanning algorithm:

$L = \{s\}$; $d(s) = 0$; $d(v) = \infty$ for $v \neq s$;

while $L \neq \emptyset$ do \
 remove v from L; \hspace{1cm} \text{scan}(v);$ for each (v, w) do \
 if $d(v) + c(v, w) < d(w)$ then \
 \hspace{1cm} $d(w) = d(v) + c(v, w)$; $p(w) = v$; add w to L \}\n
\[\text{unlabeled}\]

\[\text{labeled}\]

\[\text{scanned}\]
Ayclic: topological $O(m)$

Non neg: shortest first (mind) (Dijkstra)
$O(n^2)$ original, $O(m \log n)$ standard heap

General: FIFO-scanning
queue = T

$O(nm)$

$O(nm \log C)$ (cost-scaling)
Dijkstra alg:

monotonicity on heap:
vis are deleted from l in increasing order by d:

$Dial: \text{small integer edge weights} \quad O(m + Cn)$

$\leq C$

$\frac{1}{C}$

$m + 2 \sqrt{Cn}$

$\frac{1}{C} (m + n \log C)$
All pairs:

Dynamic prog.

\[P_2 \rightarrow P_3 \rightarrow y \]

\[x \rightarrow P_1 \]

\[d(x, x) = 0 \]

\[d(x, y) = \infty \text{ for all } x \neq y, (x, y) \notin E \]

\[d(x, y) = d(x, y) \text{ if } x \neq y, (x, y) \notin E \]

for \(z \)

for \(x \)

for \(y \)

if \(d(x, z) + d(z, y) < d(x, y) \) then

\[d(x, y) = d(x, z) + d(z, y) \]

\[O(n^3) \]
in single sources

\[\Rightarrow \text{Dijkstra}: O(nm + n^2 \log n) \]

1 Bellman-Ford = eliminate negative edge costs

\[p(v) \]

\[c'(v, w) = c(v, w) + p(v) - p(w) \geq 0 \]

\[s \xrightarrow{t} \]