1. Prove that the following problem is NP-complete: given an undirected graph G and a vertex constraint $d(v)$ at each vertex v, does G have a spanning tree that satisfies the degree constraint at every vertex? (The tree satisfies the constraint at a vertex v if the degree of v in the tree is at most $d(v)$. That is, the degree constraints are upper bounds on the allowed degrees.)

2. Bonnie and Clyde

Bonnie and Clyde have just robbed a bank. They have a bag of money and want to divide it up. For each of the following scenarios, either give a polynomial-time algorithm, or prove that the yes-no version of the problem is NP-complete. The input in each case is a list of the n items in the bag, along with the value of each, expressed in ordinary decimal notation.

 a. There are n coins, but only 2 different denominations: some coins are worth x dollars, and some are worth y dollars. They wish to divide the money exactly evenly.

 b. There are n coins, with an arbitrary number of different denominations, but each denomination is a nonnegative integer power of 2, i.e., the possible denominations are 1 dollar, 2 dollars, 4 dollars, etc. They wish to divide the money exactly evenly.

 c. There are n checks, which are, in an amazing coincidence, made out to “Bonnie or Clyde.” They wish to divide the checks so that they each get the exact same amount of money.

 d. There are n checks as in part (c), but this time they are willing to accept a split in which the difference is no larger than 100 dollars.

3. In the MAX-CUT problem, we are given an unweighted undirected graph $G = (V, E)$. We define a cut $(S, V - S)$ as in Chapter 23 and the weight of a cut as the number of edges crossing the cut. The goal is to find a cut of maximum weight. Suppose that for each vertex v, we randomly and independently place v in S with probability 1/2 and in $V - S$ with probability 1/2. Show that this algorithm is a randomized 2-approximation algorithm. Does this algorithm give a 2-approximation if the edges have arbitrary non-negative weights?
4. **Parallel machine scheduling**

In the parallel-machine-scheduling problem, we are given \(n \) jobs, \(J_1, J_2, \ldots, J_n \), where each job \(J_k \) has an associated nonnegative processing time of \(p_k \). We are also given \(m \) identical machines, \(M_1, M_2, \ldots, M_m \). A schedule specifies, for each job \(J_k \), the machine on which it runs and the time period during which it runs. Each job \(J_k \) must run on some machine \(M_i \) for \(p_k \) consecutive time units, and during that time period no other job may run on \(M_i \). Let \(C_k \) denote the completion time of job \(J_k \), that is, the time at which job \(J_k \) completes processing. Given a schedule, we define \(C_{\text{max}} = \max_{1 \leq k \leq n} C_k \) to be the makespan of the schedule. The goal is to find a schedule whose makespan is minimum.

For example, suppose that we have two machines \(M_1 \) and \(M_2 \) and that we have four jobs \(J_1, J_2, J_3, J_4 \), with \(p_1 = 2 \), \(p_2 = 12 \), \(p_3 = 4 \), and \(p_4 = 5 \). Then one possible schedule runs, on machine \(M_1 \), job \(J_1 \) followed by job \(J_2 \), and on machine \(M_2 \), it runs job \(J_4 \) followed by job \(J_3 \). For this schedule, \(C_1 = 2, C_2 = 14, C_3 = 9, C_4 = 5 \), and \(C_{\text{max}} = 14 \). An optimal schedule runs \(J_2 \) on machine \(M_1 \), and it runs jobs \(J_1, J_3, \) and \(J_4 \) on machine \(M_2 \). For this schedule, \(C_1 = 2, C_2 = 12, C_3 = 6, C_4 = 11 \), and \(C_{\text{max}} = 12 \).

Given a parallel-machine-scheduling problem, we let \(C_{\text{max}}^* \) denote the makespan of an optimal schedule.

a. Show that the optimal makespan is at least as large as the greatest processing time, that is,

\[
C_{\text{max}}^* \geq \max_{1 \leq k \leq n} p_k .
\]

b. Show that the optimal makespan is at least as large as the average machine load, that is,

\[
C_{\text{max}}^* \geq \frac{1}{m} \sum_{1 \leq k \leq n} p_k .
\]

Suppose that we use the following greedy algorithm for parallel machine scheduling: whenever a machine is idle, schedule any job that has not yet been scheduled.

c. Write pseudocode to implement this greedy algorithm. What is the running time of your algorithm?

d. For the schedule returned by the greedy algorithm, show that

\[
C_{\text{max}} \leq \frac{1}{m} \sum_{1 \leq k \leq n} p_k + \max_{1 \leq k \leq n} p_k .
\]

Conclude that this algorithm is a polynomial-time 2-approximation algorithm.