Lecture T4: NP-Completeness

Overview

Lecture T1, T2:
- What is an algorithm?
 - Turing machine
- Which problems can be solved on a computer?
 - not the halting problem

Lecture T3:
- Which ALGORITHMS will be useful in practice?
 - analysis of algorithms

This lecture:
- Which PROBLEMS can be solved in practice?
 - probably not TSP

Some Hard Problems

3-COLOR: Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

YES instance.

NO instance.
CIRCUIT-SAT: Is there a way to assign inputs to a given Boolean (combinational) circuit that makes it true?

FACTOR: Given two positive integers x and U, is there a nontrivial factor of x that is less than U?
- Factoring is at the heart of RSA encryption.

Example 1: \(x = 23,536,481,273 \), \(U = 110,000 \).
 - YES: \(x = 104,729 \times 224,737 \).

Example 2: \(x = 23,536,481,273 \), \(U = 100,000 \).
 - NO: \(104,729 \times 224,737 \) is prime factorization of x.

Example 3: \(x = 23,536,481,277 \), \(U = 23,536,481,277 \).
 - NO: x is prime.

TSP: A travelling salesperson needs to visit N cities. Is there a route of length at most D?

Biology: protein folding.
Chemistry: chemical synthesis.
Civil engineering: equilibrium of urban traffic flow.
Finance: find minimum risk portfolio of given return.
Electrical engineering: VLSI layout.
Medicine: reconstructing 3-D shape from biplane angiogram.
Operations research: optimal resource allocation.
Physics: anti-ferromagnetic Potts model.
Politics: Shapley-Shubik voting power.
Pop culture: Minesweeper consistency, playing optimal Tetris.
Statistics: optimal experimental design.
Properties of Algorithms

A given problem can be solved by many different algorithms (TMs).
- Which ones are useful in practice?

A working definition: (Jack Edmonds, 1962)
- Efficient: polynomial time for ALL inputs.
 - mergesort requires $N \log_2 N$ steps
- Inefficient: "exponential time" for SOME inputs.
 - brute force TSP takes $N! > 2^n$ steps

Broad and robust definition has led to explosion of useful algorithms for wide spectrum of problems.

Exponential Growth

Exponential growth dwarfs technological change.
- Suppose each electron in the universe had power of today's supercomputers . . .
- And each works for the life of the universe in an effort to solve TSP problem via brute force $N!$ algorithm.

<table>
<thead>
<tr>
<th>Some Numbers</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supercomputer instructions per second</td>
<td>10^{12}</td>
</tr>
<tr>
<td>Second per year</td>
<td>10^9</td>
</tr>
<tr>
<td>Age of universe in years †</td>
<td>10^{13}</td>
</tr>
<tr>
<td>Electrons in universe †</td>
<td>10^{79}</td>
</tr>
</tbody>
</table>

- Will not succeed for 1,000 city TSP!
 $1000! \gg 10^{1000} \gg 10^{79} \times 10^{13} \times 10^9 \times 10^{12}$

Properties of Problems

Which PROBLEMS will we be able to solve in practice?
- Those with efficient (polynomial-time) algorithms.

How can I tell if I am trying to solve such a problem?
- 2-COLOR: yes, linear algorithms.
- 3-COLOR: probably no.
- 4-COLOR: yes, trivial algorithm. (finding coloring is complicated)
- No easy answers!
 Theory of "NP-completeness" helps.

Definition of P:
- Set of all DECISION problems solvable in POLYNOMIAL TIME on a DETERMINISTIC Turing machine.

MULTIPLE: Is the integer y a multiple of x?
- YES: $(x, y) = (17, 51)$.
- NO: $(x, y) = (17, 50)$.

RELPRIME: Are the integers x and y relatively prime?
- YES: $(x, y) = (34, 39)$.
- NO: $(x, y) = (34, 51)$.

Definition important because of Extended Church-Turing thesis.
Strong Church-Turing Thesis

Extended Church-Turing thesis:
- If function is computable by piece of hardware in time $T(n)$ for input of size n, then computable by TM in time $(T(n))^k$ for some k.
- P is the set of all decision problems solvable in polynomial time on REAL computers.

Evidence supporting thesis:
- True for all physical computers.
 - can create deterministic TM that EFFICIENTLY simulates any existing digital computer

Possible exception:
- Quantum computers?

NP

EXP: set of all decision problems solvable in EXPONENTIAL TIME on a deterministic Turing machine.

NP: does NOT mean "not polynomial."

NP: set of all decision problems with efficient CERTIFICATION algorithm.
- Efficient: polynomial number of steps on deterministic TM.
- Certifier: check whether a proposed "solution" is correct.
 - proposed solution is called CERTIFICATE (a hint)
 - technical condition: certificate must be of polynomial size

Certifiers and Certificates

COMPOSITE: Given integer s, is s composite?

Observation. s is composite \iff there exists an integer $1 < t < s$ such that s is a multiple of t.
- YES instance: $s = 437,669$.
 - certificate $t = 541$ or 809 (a factor)
- NO instance: $s = 437,677$.
 - no certificate can fool verifier into saying YES

Conclusion: COMPOSITE $\in NP$.
Certifiers and Certificates

3-COLOR: Given planar map, can it be colored with 3 colors?

Certifier:
1. Check that s and t describe same map.
2. Count number of distinct colors in t.
3. Check all pairs of adjacent states.

NO

Input s: Certificate t:

s is a YES instance NO conclusion

3-COLOR ∈ NP.

Alternate Definition of NP

NP: set of decision problems with efficient certification algorithms.

NP: set of all decision problems solvable in polynomial time on a NONDETERMINISTIC Turing machine.

- Equivalent definition.
- Intuition: nondeterministic TM can guess and check all possible solutions in parallel.
- Real computer can simulate nondeterministic TM, but takes exponential time unless you get "lucky."

\[P \subseteq NP \subseteq EXP \]

The Main Question

Does P = NP? (Edmonds, 1962)
- Is the original DECISION problem as easy as CERTIFICATION?
- Does nondeterminism help you solve problems faster?

Most important open problem in computer science.
- If yes, staggering practical significance.
- Clay Foundation Millennium $1 million prize.

The Main Question

Does P = NP?
- Is the original DECISION problem as easy as CERTIFICATION?

If yes, then:
- Efficient algorithms for 3-COLOR, TSP, FACTOR.
- Cryptography is theoretically impossible (except for one-time pads) on conventional machines.
- Modern banking system will collapse.

If no, then:
- Can't hope to write efficient algorithm for TSP.
 - see NP-completeness
The Main Question

Does P = NP?
- Is the original DECISION problem as easy as CERTIFICATION?

Probably no, since:
- Thousands of researchers have spent four decades in search of polynomial algorithms for many fundamental NP problems without success.
- Consensus opinion: P \neq NP.

But maybe yes, since:
- No success in proving P \neq NP either.

NP-Complete

Definition of NP-complete:
- A problem in NP with the property that if it can be solved efficiently, then it can be used as a subroutine to solve any other problem in NP efficiently.
- "Hardest computational problems" in NP.

Links together a huge and diverse number of fundamental problems:
- TSP, 3-COLOR, CIRCUIT-SAT, thousands more.
- Given an efficient algorithm for 3-COLOR, can efficiently solve TSP, CIRCUIT-SAT, FACTOR, etc.
- Can implement any program in 3-COLOR.

Note: FACTOR not known to be NP-complete.

Notorious complexity class.
- Only exponential algorithms known for these problems.
- Called INTRACTABLE - unlikely that they can be solved given limited computing resources.

Reduction

Reduction is a general technique for showing that one problem is harder (easier) than another.
- For problems Y and X, we can often show: if Y can be solved efficiently, then so can X.
- In this case, we say X reduces to Y. (X is "easier" than Y).

Warmup: PRIMALITY reduces to FACTOR.
- Given an efficient algorithm for FACTOR(x, U), want to design an efficient algorithm for PRIMALITY(p).
 - Step 1: Compute FACTOR(p, p).
 - Step 2: If answer = YES, return NO; otherwise return YES.

- Original problem: Is p = 437,669 prime?
The World's First NP-Complete Problem

SAT is NP-complete. (Cook-Levin, 1960s)

Idea of proof:
- Given problem \(X \in \text{NP} \), by definition there exists nondeterministic TM \(M \) that solves \(X \) in polynomial time.
- Use Boolean variables to model which symbol occupies cell \(i \) at step \(t \), location of read head at step \(t \), state of finite control at step \(t \), etc.
- Use logic gates to ensure machine makes legal moves, etc.
- SAT instance is satisfiable if and only if TM outputs YES.

Minesweeper Consistency Problem

Minesweeper.
- Start: blank grid of squares.
- Some squares conceal mines; the rest are safe.
- Find location of all mines without detonating any.
- Choose a square.
 - if mine underneath, it detonates and you lose
 - If no mine, computer tells you # mines in neighboring squares
- Repeat.
Minesweeper Consistency Problem

Minesweeper consistency problem.
- Given a state of what purports to be a Minesweeper game, is it logically consistent?

Claim. Minesweeper consistency is NP-complete.
- Proof idea: reduce from circuit satisfiability.
- Build circuit by laying out appropriate minesweeper configurations.

\[
\begin{array}{cccccccccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & x & x' & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

A Minesweeper Wire

Coping With NP-Completeness

Hope that worst case doesn’t occur.
- Complexity theory deals with worst case behavior. The instance(s) you want to solve may be “easy.”
 - TSP where all points are on a line or circle
 - 13,509 US city TSP problem solved

(Cook et. al., 1998)
Coping With NP-Completeness

Hope that worst case doesn’t occur.

Change the problem.
- Develop a heuristic, and hope it produces a good solution.
 - TSP assignment
 - Metropolis algorithm, simulating annealing, genetic algorithms
- Design an approximation algorithm: algorithm that is guaranteed to find a high-quality solution in polynomial time.
 - active area of research, but not always possible!
 - Euclidean TSP tour within 1% of optimal

Sanjeev Arora (1997)

Coping With NP-Completeness

Hope that worst case doesn’t occur.

Change the problem.

Exploit intractability.

Keep trying to prove P = NP.

Summary

Many fundamental problems are NP-complete.
- TSP, CIRCUIT-SAT, 3-COLOR.

Theory says we probably won’t be able to design efficient algorithms for NP-complete problems.
- You will surely run into these problems in your scientific life.
- If you know about NP-completeness, you can identify them and avoid wasting time and energy.

A person can be at most two of the following three things:
- Honest.
- Intelligent.
- A politician.

If a problem is NP-complete, you can design an algorithm to do at most two of the following three things:
- Solve the problem to optimality.
- Solve the problem in polynomial time.
- Solve arbitrary instances of the problem.