Confidentiality, Privacy and Security
Privacy

• The desire of a person to control the disclosure of personal health information
Confidentiality

• The ability of a person to control release of personal health information to a care provider or information custodian under an agreement that limits further release of that information
Security

- Protection of privacy and confidentiality through policies, procedures and safeguards.
Why do they matter?

- Ethically, privacy and confidentiality are considered to be rights (in our culture)
- Information revealed may result in harm to interests of the individual
- The provision of those rights tends to ensure that the information is accurate and complete
- Accurate and complete information from individuals benefits society in limiting spread of diseases to society (i.e. HIV)
Why do they matter?

• The preservation of confidentiality assists research which in turn assists patients
Users of health information

- Patient
 - Historical information for current and future care
 - Insurance claims
- MD’s
 - Patient’s medical needs
 - Documentation
 - Interface with other providers
 - Billing
Users

• Health insurance company
 – Claims processing
 – Approve consultation requests
• Laboratory
 – Process specimens
 – Results reporting
 – Billing
Users

• Pharmacy
 – Fill prescription
 – Billing

• Hospital
 – Care provision
 – Record of services
 – Billing
 – Vital statistics
 – Regulatory agencies
Users

• State bureau
 – Birth statistics
 – Epidemiology

• Accrediting organization
 – Hospital review

• Employer
 – Request claims data
 – Review claims for $ reduction
 – Benefits package adjustments
Users

• Life insurance companies
 – Process applications
 – Process claims
 – Risk assessment

• Medical information bureau
 – Fraud reduction for life insurance companies

• Managed care company
 – Process claims
 – Evaluate MD’s
Users

• Lawyers
 – Adherence to standard of practice
 – Malpractice claims

• Researcher
 – Evaluate research program
Security

- Availability
- Accountability
- Perimeter definition
- Rule-limited access
- Comprehensibility and control
Privacy solutions

• Forbid the collection of data that might be misused
• Allow the collection of health information within a structure, but with rules and penalties for violation pertaining to collecting *organizations*
• Generate policies to which *individual* information handlers must adhere
Security controls

• Management controls
 – Program management/risk management

• Operational controls
 – Operated by people

• Technical controls
 – Operated by the computer system
Management controls

- Establishment of key security policies, i.e. policies pertaining to remote access
 - Program policy
 - Definition, scope, roles and responsibilities of the computer security program
 - Issue specific policy
 - Example: Y2K
 - System specific policy
 - Who can access what functions where
Core security policies

- Confidentiality
- Email
- System access
- Virus protection
- Internet/intranet use
- Remote access
- Software code of ethics
- Backup and recovery
- Security training and awareness
Biometrics

• The scientific discipline of measuring relevant attributes of living individuals or populations to identify active properties or unique characteristics
 – Can be used to evaluate changes over time for medical monitoring or diagnosis
 – Can be used for security
Approaches to identification

- **Token based simple security**
 - House key, security card, transponder

- **Knowledge based**
 - SSN, password, PIN

- **Two-factor**
 - Card + PIN
Approaches to identification

• Authoritative ID
Identification

• Certain and unambiguous
 – Deterministic
• Certain with small probability of error
 – Probabilistic
• Uncertain and ambiguous
• Biometric schemes are probabilistic
Probabilistic

- **False acceptance rate (type I error)**
 - Percentage of unauthorized attempts that will be accepted
 - Also relevant for medical studies
- **False rejection rate (type II error)**
 - Percentage of authorized attempts that will be rejected
 - Also relevant for medical studies
- **Equal error rate**
 - Intersection of the lowest FAR and FRR
Biometric ID

• Acquire the biometric ID
 – How do you ensure that you got the right guy

• Localize the attribute
 – Eliminate noise
 – Develop a template (reduced data set)

• Check for duplicates
Biometric applications

• Identification
 – Search the database to find out who the unknown is
 – Check entire file

• Authentication
 – Verify that the person is who he says he is
 – Check his file and match
Biometric identifiers

- Should be universal attribute
- Consistent – shouldn’t change over time
- Unique
- Permanent
- Inimitable (voice can be separated from the individual)
- Collectible – easy to gather the attribute
- Tamper resistant
- (Cheaply) comparable - template
Biometric technologies

- **Fingerprint**
 - Automated fingerprint ID systems (law enforcement)
 - Fingerprint recognition – derives template form features for ID
 - Validating temp and/or pulse
 - Optical vs. solid state (capacitance)
 - Low FAR and FRR
Fingerprint

Exhibit 11.5. Fingerprint recognition process.
Hand geometry

- Dimensions of fingers and location of joints unique
- Low FAR FRR
Retinal scan

- Very reliable
- More expensive than hand or fingerprint
- Extremely low FAR FRR
Retinal scan

Exhibit 11-6. Retinal recognition process.
Voice recognition

• Automatic speaker verification (ASV) vs. automatic speaker identification (ASI)
 – ASV = authentication in a two-factor scheme
 – ASI = who is speaker
 – Feature extraction and matching
 – Problems with disease/aging etc.
Iris scanning

- Less invasive than retinal scanning
- Technically challenging balancing optics, ambient light etc.
- Can be verified (live subject) by iris response to light
Face recognition/thermography

- Facial architecture and heat signature
- Relatively high FAR/FRR
- Useful in two factor scenarios
Hand vein

• Infrared scanning of the architecture of the hand vessels
Signature

• Architecture of the signature
• Dynamics of the signature (pressure and velocity)
<table>
<thead>
<tr>
<th>Attribute</th>
<th>System</th>
<th>Suitability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal</td>
<td>Consistent</td>
<td>Unique</td>
</tr>
<tr>
<td>Fingerprint</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Hand Geometry</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Retinal Scan</td>
<td></td>
<td>○</td>
</tr>
<tr>
<td>Voice Print</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Iris</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Hand Vein</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Signature</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Face Recognition</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Thermogram</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

High = ○
Medium = ○
Low = ○

Exhibit 11.7. Comparison of representative technologies.
Biometric identification issues

• Privacy, anonymity
• Legal issues not defined
Security: availability

• Ensures that accurate, up-to-date information is available when needed at appropriate places
Security: accountability

• Ensures that users are responsible for their access to and use of information based on a documented need and right to know
Security: perimeter definition

- Allows the system to control the boundaries of trusted access to an information system both physically and logically
Security: rule-limited access

• Enables access for personnel to only that information essential to the performance of their jobs and limits the real or perceived temptation to access information beyond a legitimate need
Security: comprehensibility and control

• Ensures that record owners, data stewards and patients can understand and have effective control over appropriate aspects of information confidentiality and access
Availability

• Backups with local and off-site copies of the data
• Secure housing and power sources for CPU even during disasters (when system availability may be crucial)
• Virus protection
Accountability

- Audit trails and warnings
- User
 - Authentication – unique ID process
 - Authorization – to perform set of actions, i.e. access only their own patients
Perimeter definition

• System knows users and how they are using the system
 – Define the boundaries of the system (i.e. within the firewall) Princeton-Penn-HUP
 – How do you permit/monitor off-site access
 – Modems?

• Tools
 – Cryptographic authentication
Perimeter definition

• Public key-private key
 – Encryption
 • Privacy and confidentiality
 – Digital signatures
 • Prescription signature
 – Content validation
 • Message hasn’t been messed with
 – Nonrepudiation
 • “I didn’t say that”
Role limited access

• Spheres of access
 – Patient list: patients one has a role in the care of
 – Content specific: billing clerk/billing info
 – Relevant data: researcher on heart disease shouldn’t be able to learn about HIV status
Taxonomy of organizational threats

• Motive
 – Health records have economic value to insurers, employers, journalists, enemy states etc.
 – Curiosity about the health status of friends, romantic interests, coworkers or celebrities
 – Clandestine observation of employees (GE)
 – Desire to gain advantage in contentious situations (divorce)
Resources

• Attackers may range from
 – Individuals
 – Small group (e.g. law firm)
 – Large group (e.g. insurer, employer)
 – Intelligence agency
 – Organized crime
Initial access

• Site access
• System authorization
• Data authorization
Technical capability

• Aspiring attacker (limited skills)
 – Research target
 – Masquerade as an employee
 – Guess password
 – Dumpster diving
 – Become temporary employee
Technical capability

- **Script runner**
 - Acquire software from web-sites for automated attacks

- **Accomplished attacker**
 - Able to use scripted or unscripted (ad-hoc) attacks
Levels of threat

• Threat 1
 – Insiders who make “innocent” mistakes and cause accidental disclosure
 – Elevator discussion, info left on screen, chart left in hallway etc.

• Threat 2
 – Insiders who abuse their privileges
Threat

• Threat 3
 – Insiders who access information inappropriately for spite or profit
 – London Times reported that anyone’s electronic record could be obtained for $300

• Threat 4
 – Unauthorized physical intruder
 – Fake labcoat
Threats

• Threat 5
 – Vengeful employees or outsiders bent on destruction or degradation, e.g. deletion, system damage, DOS attacks
 – Latent problem
Countering threats

• Deterrence
 – Create sanctions
 – Depends on identification of bad actors

• Imposition of obstacles
 – Firewalls
 – Access controls
 – Costs, decreased efficiency, impediments to appropriate access
Countermeasures

<table>
<thead>
<tr>
<th>Type</th>
<th>System</th>
<th>Data</th>
<th>Site</th>
<th>Threat</th>
<th>Counter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Mistake</td>
<td>Org and technical measures</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>Y</td>
<td>N/A</td>
<td>Improper use of access privileges</td>
<td>Authentication and auditing</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>N</td>
<td>N/A</td>
<td>Unauthorized for spite of money</td>
<td>Authentication and auditing</td>
</tr>
<tr>
<td>4</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Unauthorized physical intrusion</td>
<td>Physical security and access control</td>
</tr>
<tr>
<td>5</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>Technical breakin</td>
<td>Authentication, access and crypto</td>
</tr>
</tbody>
</table>
Counter threat 1

- Behavioral code
- Screen savers, automated logout
- ? Patient pseudonyms
Counter threat 2

- Deterrence
- Sanctions
- Audit
- Encryption (user must obtain access keys)
Counter threat 3

- Audit trails
- Sanctions appropriate to crime
Counter threat 4

- Deterrence
- Strong technical measures (surveillance tapes)
- Strong identification and authentication measures
Counter threat 5

- Obstacles
- Firewalls
Issues with countermeasures

• Internet interface
• Legal and national jurisdiction
• Best balance is relatively free internal environment with strong boundaries
 – Requires strong ID/auth
Recommendations

• Individual user ID and authentication
 – Automated logout
 – Password discipline

• Access controls
 – Role limited
 – Role definitions
 • Cardiologist vs. MD

• Audit trails
Recommendations

• Physical security and disaster recovery
 – Location of terminals
 – Handling of paper printouts

• Remote access points
 – VPN’s
 – Encrypted passwords
 – Dial-ins
Recommendations

• External communications
 – Encrypt all patient related data over publicly available networks

• Software discipline
 – Virus checking programs

• System assessment
 – Run scripted attacks against one’s own system
Recommendations

• Develop security and confidentiality policies
 – Publish
 – Committees
 – ISO’s
 – Sanctions

• Patient access to audit logs
 – Who saw my record and why
Future recommendations

• Strong authentication
 – Token based authentication (two factor)
• Enterprise wide authentication
 – One-time login to authorized systems
• Access validation
 – Masking
• Expanded audit trails
• Electronic signatures
Universal patient identifier

- Methodology should have an explicit framework specifying linkages that violate patient privacy
- Facilitate the identification of parties that make improper linkages
- Unidirectional – should facilitate helpful linkages of health records but prevents identification of patient from health records or the identifier