Security

Outline
- Encryption Algorithms
- Authentication Protocols
- Message Integrity Protocols
- Key Distribution
- Firewalls

Overview

- Cryptography functions
 - Secret key (e.g., DES)
 - Public key (e.g., RSA)
 - Message digest (e.g., MD5)
- Security services
 - Privacy: preventing unauthorized release of information
 - Authentication: verifying identity of the remote participant
 - Integrity: making sure message has not been altered

Secret Key (DES)

Plaintext

Encrypt with secret key

Ciphertext

Decrypt with secret key

Plaintext
• 64-bit key (56-bits + 8-bit parity)
• 16 rounds

Each Round

• Repeat for larger messages

Public Key (RSA)

• Encryption & Decryption
 \[c = m^e \mod n \]
 \[m = c^d \mod n \]
RSA (cont)

- Choose two large prime numbers \(p \) and \(q \) (each 256 bits)
- Multiply \(p \) and \(q \) together to get \(n \)
- Choose the encryption key \(e \), such that \(e \) and \((p - 1) \times (q - 1) \) are relatively prime.
- Two numbers are relatively prime if they have no common factor greater than one
- Compute decryption key \(d \) such that \(d = e^{-1} \mod ((p - 1) \times (q - 1)) \)
- Construct public key as \((e, n) \)
- Construct public key as \((d, n) \)
- Discard (do not disclose) original primes \(p \) and \(q \)

Message Digest

- Cryptographic checksum
 - just as a regular checksum protects the receiver from accidental changes to the message, a cryptographic checksum protects the receiver from malicious changes to the message.
- One-way function
 - given a cryptographic checksum for a message, it is virtually impossible to figure out what message produced that checksum; it is not computationally feasible to find two messages that hash to the same cryptographic checksum.
- Relevance
 - if you are given a checksum for a message and you are able to compute exactly the same checksum for that message, then it is highly likely this message produced the checksum you were given.

Authentication Protocols

- Three-way handshake

- Choose two large prime numbers \(p \) and \(q \) (each 256 bits)
- Multiply \(p \) and \(q \) together to get \(n \)
- Choose the encryption key \(e \), such that \(e \) and \((p - 1) \times (q - 1) \) are relatively prime.
- Two numbers are relatively prime if they have no common factor greater than one
- Compute decryption key \(d \) such that \(d = e^{-1} \mod ((p - 1) \times (q - 1)) \)
- Construct public key as \((e, n) \)
- Construct public key as \((d, n) \)
- Discard (do not disclose) original primes \(p \) and \(q \)

Message Digest

- Cryptographic checksum
 - just as a regular checksum protects the receiver from accidental changes to the message, a cryptographic checksum protects the receiver from malicious changes to the message.
- One-way function
 - given a cryptographic checksum for a message, it is virtually impossible to figure out what message produced that checksum; it is not computationally feasible to find two messages that hash to the same cryptographic checksum.
- Relevance
 - if you are given a checksum for a message and you are able to compute exactly the same checksum for that message, then it is highly likely this message produced the checksum you were given.

Authentication Protocols

- Three-way handshake
• Trusted third party (Kerberos)

• Public key authentication

Message Integrity Protocols
• Digital signature using RSA
 – special case of a message integrity where the code can only have been generated by one participant
 – compute signature with private key and verify with public key
• Keyed MD5
 – sender: $m + MD5(m + k) + E(k, \text{private})$
 – receiver
 • recovers random key using the sender’s public key
 • applies MD5 to the concatenation of this random key message
• MD5 with RSA signature
 – sender: $m + E(MD5(m), \text{private})$
 – receiver
 • decrypts signature with sender’s public key
 • compares result with MD5 checksum sent with message
Message Integrity Protocols

- Digital signature using RSA
 - special case of a message integrity where the code can only have been generated by one participant
 - compute signature with private key and verify with public key
- Keyed MD5
 - sender: $m + MD5(m + k) + E(k, rcv-pub), private$
 - receiver
 - recovers random key using the sender’s public key
 - applies MD5 to the concatenation of this random key message
- MD5 with RSA signature
 - sender: $m + E(MD5(m), private)$
 - receiver
 - decrypts signature with sender’s public key
 - compares result with MD5 checksum sent with message

Key Distribution

- Certificate
 - special type of digitally signed document:
 - “I certify that the public key in this document belongs to the entity named in this document, signed X.”
 - the name of the entity being certified
 - the public key of the entity
 - the name of the certified authority
 - a digital signature
- Certified Authority (CA)
 - administrative entity that issues certificates
 - useful only to someone that already holds the CA’s public key.

Key Distribution (cont)

- Chain of Trust
 - if X certifies that a certain public key belongs to Y, and
 Y certifies that another public key belongs to Z, then
 there exists a chain of certificates from X to Z
 - someone that wants to verify Z’s public key has to know Y’s public key and follow the chain
- Certificate Revocation List
Firewalls

• Filter-Based Solution
 – example
 (192.12.13.14, 1234, 128.7.6.5, 80)
 (**, 128.7.6.5, 80)
 – default: forward or not forward?
 – how dynamic?

Proxy-Based Firewalls

• Problem: complex policy
• Example: web server

 • Solution: proxy

 • Design: transparent vs. classical
• Limitations: attacks from within

Denial of Service

• Attacks on end hosts
 – SYN attack
• Attacks on routers
 – Christmas tree packets
 – pollute route cache
• Authentication attacks
• Distributed DoS attacks