Overview

Lecture T4:
- What is an algorithm?
 - Turing machine.
- Is it possible, in principle, to write a program to solve any problem?
 - No. Halting problem and others are unsolvable.

This Lecture:
- For many problems, there may be several competing algorithms.
 - Which one should I use?
- Computational complexity:
 - Rigorous and useful framework for comparing algorithms and predicting performance.
- Use sorting as a case study.
Linear Growth

Grade school addition.

- Work is proportional to number of digits \(N \).
- Linear growth: \(kN \) for some constant \(k \).

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(N = 4 \)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

\(N = 8 \)

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(2N \) read operations
- \(2N + 1 \) write operations
- \(N \) odd parity operations
- \(N \) majority operations
Quadratic Growth

Grade school multiplication.

- Work is proportional to square of number of digits N.
- Quadratic growth: $k N^2$ for some constant k.

<table>
<thead>
<tr>
<th>$N = 4$</th>
<th>1 0 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* 1 1 0 1</td>
</tr>
<tr>
<td>1 0 1 1</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 0 0 1 1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$N = 8$</th>
<th>1 1 0 1 0 1 0 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>* 0 1 1 1 1 1 0 1</td>
</tr>
<tr>
<td>1 1 0 1 0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1 0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1 0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1 0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1 0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>1 1 0 1 0 1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

2N reads
$N^2 + 2N + 1$ writes
N-1 adds on N-bit integers
Why Does It Matter?

<table>
<thead>
<tr>
<th>Time to solve a problem of size</th>
<th>1.3 N³</th>
<th>10 N²</th>
<th>47 N log₂N</th>
<th>48 N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1.3 seconds</td>
<td>10 msec</td>
<td>0.4 msec</td>
<td>0.048 msec</td>
</tr>
<tr>
<td>10,000</td>
<td>22 minutes</td>
<td>1 second</td>
<td>6 msec</td>
<td>0.48 msec</td>
</tr>
<tr>
<td>100,000</td>
<td>15 days</td>
<td>1.7 minutes</td>
<td>78 msec</td>
<td>4.8 msec</td>
</tr>
<tr>
<td>million</td>
<td>41 years</td>
<td>2.8 hours</td>
<td>0.94 seconds</td>
<td>48 msec</td>
</tr>
<tr>
<td>10 million</td>
<td>41 millennia</td>
<td>1.7 weeks</td>
<td>11 seconds</td>
<td>0.48 seconds</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max size problem solved in one</th>
<th>second</th>
<th>920</th>
<th>10,000</th>
<th>1 million</th>
<th>21 million</th>
</tr>
</thead>
<tbody>
<tr>
<td>minute</td>
<td>3,600</td>
<td>77,000</td>
<td>49 million</td>
<td>1.3 billion</td>
<td></td>
</tr>
<tr>
<td>hour</td>
<td>14,000</td>
<td>600,000</td>
<td>2.4 trillion</td>
<td>76 trillion</td>
<td></td>
</tr>
<tr>
<td>day</td>
<td>41,000</td>
<td>2.9 million</td>
<td>50 trillion</td>
<td>1,800 trillion</td>
<td></td>
</tr>
</tbody>
</table>

N multiplied by 10, time multiplied by

- 1,000
- 100
- 10
- 10+
Orders of Magnitude

<table>
<thead>
<tr>
<th>Seconds</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 second</td>
</tr>
<tr>
<td>10</td>
<td>10 seconds</td>
</tr>
<tr>
<td>10^2</td>
<td>1.7 minutes</td>
</tr>
<tr>
<td>10^3</td>
<td>17 minutes</td>
</tr>
<tr>
<td>10^4</td>
<td>2.8 hours</td>
</tr>
<tr>
<td>10^5</td>
<td>1.1 days</td>
</tr>
<tr>
<td>10^6</td>
<td>1.6 weeks</td>
</tr>
<tr>
<td>10^7</td>
<td>3.8 months</td>
</tr>
<tr>
<td>10^8</td>
<td>3.1 years</td>
</tr>
<tr>
<td>10^9</td>
<td>3.1 decades</td>
</tr>
<tr>
<td>10^{10}</td>
<td>3.1 centuries</td>
</tr>
<tr>
<td>...</td>
<td>forever</td>
</tr>
<tr>
<td>10^{21}</td>
<td>age of universe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meters Per Second</th>
<th>Imperial Units</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-10}</td>
<td>1.2 in / decade</td>
<td>Continental drift</td>
</tr>
<tr>
<td>10^{-8}</td>
<td>1 ft / year</td>
<td>Hair growing</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>3.4 in / day</td>
<td>Glacier</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>1.2 ft / hour</td>
<td>Gastro-intestinal tract</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>2 ft / minute</td>
<td>Ant</td>
</tr>
<tr>
<td>1</td>
<td>2.2 mi / hour</td>
<td>Human walk</td>
</tr>
<tr>
<td>10^2</td>
<td>220 mi / hour</td>
<td>Propeller airplane</td>
</tr>
<tr>
<td>10^4</td>
<td>370 mi / min</td>
<td>Space shuttle</td>
</tr>
<tr>
<td>10^6</td>
<td>620 mi / sec</td>
<td>Earth in galactic orbit</td>
</tr>
<tr>
<td>10^8</td>
<td>62,000 mi / sec</td>
<td>1/3 speed of light</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Powers of 2</th>
<th>210</th>
<th>thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>220</td>
<td>million</td>
</tr>
<tr>
<td></td>
<td>230</td>
<td>billion</td>
</tr>
</tbody>
</table>
Historical Quest for Speed

Multiplication: $a \times b$.

- **Naïve:** add a to itself b times. $N \ 2^N \text{ steps}$
- **Grade school.** $N^2 \text{ steps}$
- **Divide-and-conquer (Karatsuba, 1962).** $N^{1.58} \text{ steps}$
- **Ingenuity (Schönhage and Strassen, 1971).** $N \log N \log \log N \text{ steps}$

Greatest common divisor: $\gcd(a, b)$.

- **Naïve:** factor a and b, then find $\gcd(a, b)$. 2^N steps
- **Euclid (20 BCE):** $\gcd(a, b) = \gcd(b, a \mod b)$. $N \text{ steps}$

$N = \# \text{ bits in binary representation of } a, b$

step = integer division
Better Machines vs. Better Algorithms

New machine.
- Costs $$$ or more.
- Makes "everything" finish sooner.
- Incremental quantitative improvements (Moore’s Law).
- May not help much with some problems.

New algorithm.
- Costs $ or less.
- Dramatic qualitative improvements possible! (million times faster)
- May make the difference, allowing specific problem to be solved.
- May not help much with some problems.
Impact of Better Algorithms

Example 1: N-body-simulation.
- Simulate gravitational interactions among N bodies.
 - physicists want N = # atoms in universe
- Brute force method: N\(^2\) steps.

Example 2: Discrete Fourier Transform (DFT).
- Breaks down waveforms (sound) into periodic components.
 - foundation of signal processing
 - CD players, JPEG, analyzing astronomical data, etc.
- Grade school method: N\(^2\) steps.
 FFT algorithm: N \log N steps, enables new technology.
Case Study: Sorting

Sorting problem:
- Given N items, rearrange them so that they are in increasing order.
- Among most fundamental problems.

<table>
<thead>
<tr>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauser</td>
</tr>
<tr>
<td>Hong</td>
</tr>
<tr>
<td>Hsu</td>
</tr>
<tr>
<td>Hayes</td>
</tr>
<tr>
<td>Haskell</td>
</tr>
<tr>
<td>Hanley</td>
</tr>
<tr>
<td>Hornet</td>
</tr>
<tr>
<td>Hill</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hanley</td>
</tr>
<tr>
<td>Haskell</td>
</tr>
<tr>
<td>Hauser</td>
</tr>
<tr>
<td>Hayes</td>
</tr>
<tr>
<td>Hill</td>
</tr>
<tr>
<td>Hong</td>
</tr>
<tr>
<td>Hornet</td>
</tr>
<tr>
<td>Hsu</td>
</tr>
</tbody>
</table>

![Diagram showing sorting process]
Case Study: Sorting

Sorting problem:

- Given N items, rearrange them so that they are in increasing order.
- Among most fundamental problems.

Insertion sort

- Brute-force sorting solution.
- Move left-to-right through array.
- Exchange next element with larger elements to its left, one-by-one.
Generic Item to Be Sorted

Define generic Item type to be sorted.

- Associated operations:
 - less, show, swap, rand
- Example: integers.

```
typedef int Item;

int ITEMless(Item a, Item b);
void ITEMshow(Item a);
void ITEMswap(Item *pa, Item *pb);
int ITEMscan(Item *pa);
```

return 1 if a < b

swap 2 Items
```c
#include <stdio.h>
#include "ITEM.h"

int ITEMless(Item a, Item b) {
    return (a < b);
}

void ITEMswap(Item *pa, Item *pb) {
    Item t;
    t = *pa; *pa = *pb; *pb = t;
}

void ITEMshow(Item a) {
    printf("%d\n", a);
}

void ITEMscan(Item *pa) {
    return scanf("%d", pa);
}
```

swap integers – need to use pointers
Generic Sorting Program

```c
#include <stdio.h>
#include <stdlib.h>
#include "Item.h"
#define N 2000000

int main(void) {
    int i, n = 0;
    Item a[N];

    int main(void) {
        int i, n = 0;
        Item a[N];

        while(ITEMscan(&a[n]) != EOF)
            n++;

        while(ITEMscan(&a[n]) != EOF)
            n++;

        sort(a, 0, n-1);

        sort(a, 0, n-1);

        for (i = 0; i < n; i++)
            ITEMshow(a[i]);

        for (i = 0; i < n; i++)
            ITEMshow(a[i]);

        return 0;
    }
```
void insertionsort(Item a[], int left, int right) {
 int i, j;

 for (i = left + 1; i <= right; i++)
 for (j = i; j > left; j--)
 if (ITEMless(a[j], a[j-1]))
 ITEMswap(&a[j], &a[j-1]);
 else
 break;
}
Profiling Insertion Sort Empirically

Use lcc "profiling" capability.
 • Automatically generates a file prof.out that has frequency counts for each instruction.
 • Striking feature:
 – HUGE numbers!

Unix

```bash
% lcc -b insertion.c item.c
% a.out < sort1000.txt
% bprint
```

Insertion Sort prof.out

```c
void insertionsort(Item a[], int left, int right) {
  int i, j;
  for (i = left + 1; i <= right; i++)
    for (j = i; j > left; j--)
      if (ITEMless(a[j], a[j-1]))
        ITEMswap(&a[j], &a[j-1]);
      else
        break;
}
```
Profiling Insertion Sort Analytically

How long does insertion sort take?
- Depends on number of elements N to sort.
- Depends on specific input.
- Depends on how long compare and exchange operation takes.

Worst case.
- Elements in reverse sorted order.
 - i^{th} iteration requires $i - 1$ compare and exchange operations
 - total = $0 + 1 + 2 + \ldots + N-1 = N (N-1) / 2$
Profiling Insertion Sort Analytically

How long does insertion sort take?
- Depends on number of elements N to sort.
- Depends on specific input.
- Depends on how long compare and exchange operation takes.

Best case.
- Elements in sorted order already.
 - \(i^{\text{th}} \) iteration requires only 1 compare operation
 - total = 0 + 1 + 1 + \ldots + 1 = N -1

\[\begin{array}{cccccccc}
A & B & C & D & E & F & G & H & I & J \\
\end{array}\]

- unsorted
- active
- sorted
Profiling Insertion Sort Analytically

How long does insertion sort take?
- Depends on number of elements N to sort.
- Depends on specific input.
- Depends on how long compare and exchange operation takes.

Average case.
- Elements are randomly ordered.
 - i^{th} iteration requires $i / 2$ comparison on average
 - total = $0 + 1/2 + 2/2 + \ldots + (N-1)/2 = N (N-1) / 4$
 - check with profile: 249,750 vs. 256,313

![B E F R T U O R C E]

- unsorted
- active
- sorted
Profiling Insertion Sort Analytically

How long does insertion sort take?
- Depends on number of elements N to sort.
- Depends on specific input.
- Depends on how long compare and exchange operation takes.

Worst case: \(N (N - 1) / 2 \).

Best case: \(N - 1 \).

Average case: \(N (N - 1) / 4 \).
Estimating the Running Time

Total run time:
- Sum over all instructions: frequency * cost.

Frequency:
- Determined by algorithm and input.
- Can use `lcc -b` (or analysis) to help estimate.

Cost:
- Determined by compiler and machine.
- Could use `lcc -s` (plus manuals).
Estimating the Running Time

Easier alternative.

(i) Analyze asymptotic growth.
(ii) For medium N, run and measure time.
For large N, use (i) and (ii) to predict time.

Asymptotic growth rates.

- Estimate time as a function of input size.
 - N, $N \log N$, N^2, N^3, 2^N, $N!$
- Ignore lower order terms and leading coefficients.
 - Ex. $6N^3 + 17N^2 + 56$ is proportional to N^3

Insertion sort is quadratic. On arizona: 1 second for $N = 10,000$.
- How long for $N = 100,000$? 100 seconds (100 times as long).
- $N = 1$ million? 2.78 hours (another factor of 100).
- $N = 1$ billion? 317 years (another factor of 10^6).
Sorting Case Study: mergesort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
 - Divide array into two halves.
 - Sort each half separately. How do we sort half size files?

\[\text{M E R G E S} \quad \text{S O R T M E} \]
\[\text{M E R G E S} \quad \text{O R T M E} \]
\[\text{E E G M R S} \quad \text{E M O R T} \]
Sorting Case Study: mergesort

Insertion sort (brute-force)

Mergesort (divide-and-conquer)
- Divide array into two halves.
- Sort each half separately.
- Merge two halves to make sorted whole.

MERGESORT

<table>
<thead>
<tr>
<th>M</th>
<th>E</th>
<th>R</th>
<th>G</th>
<th>E</th>
<th>S</th>
<th>O</th>
<th>R</th>
<th>T</th>
<th>M</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>E</td>
<td>R</td>
<td>G</td>
<td>E</td>
<td>S</td>
<td>O</td>
<td>R</td>
<td>T</td>
<td>M</td>
<td>E</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>R</td>
<td>S</td>
<td>E</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>T</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>E</td>
<td>G</td>
<td>M</td>
<td>M</td>
<td>O</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>T</td>
</tr>
</tbody>
</table>
Profiling Mergesort Analytically

How long does mergesort take?

- Bottleneck = merging (and copying).
 - merging two files of size \(N/2\) requires \(N\) comparisons
- \(T(N)\) = comparisons to mergesort array of \(N\) elements.

\[
T(N) = \begin{cases}
0 & \text{if } N = 1 \\
2T(N/2) + N & \text{otherwise}
\end{cases}
\]

Unwind recurrence: (assume \(N = 2^k\)).

\[
T(N) = 2T(N/2) + N = 2 \left(2T(N/4) + N/2\right) + N \\
= 4T(N/4) + 2N = 4 \left(2T(N/8) + N/4\right) + 2N \\
= 8T(N/8) + 3N \\
= 16T(N/16) + 4N \\
\ldots \\
= NT(1) + kN \\
= 0 + N \log_2 N
\]
Profiling Mergesort Analytically

How long does mergesort take?

- Bottleneck = merging (and copying).
 - merging two files of size $N/2$ requires N comparisons
- $N \log_2 N$ comparisons to sort ANY array of N elements.
 - even already sorted array!

How much space?

- Can’t do “in-place” like insertion sort.
- Need auxiliary array of size N.

Implementing Mergesort

mergesort (see Sedgewick Program 8.3)

```c
Item aux[MAXN];

void mergesort(Item a[], int left, int right) {
    int mid = (right + left) / 2;
    if (right <= left)
        return;
    mergesort(a, left, mid);
    mergesort(a, mid + 1, right);
    merge(a, left, mid, right);
}
```
Implementing Mergesort

```c
void merge(Item a[], int left, int mid, int right) {
    int i, j, k;

    for (i = mid+1; i > left; i--)
        aux[i-1] = a[i-1];
    for (j = mid; j < right; j++)
        aux[right+mid-j] = a[j+1];

    for (k = left; k <= right; k++)
        if (ITEMless(aux[i], aux[j]))
            a[k] = aux[i++];
        else
            a[k] = aux[j--];
}
```

merge (see Sedgewick Program 8.2)

copy to temporary array
merge two sorted sequences
Mergesort prof.out

```c
void merge(Item a[], int left, int mid, int right) {
    int i, j, k;
    for (i = mid+1; i > left; i--)
        aux[i-1] = a[i-1];
    for (j = mid; j < right; j++)
        aux[right+mid-j] = a[j+1];
    for (k = left; k <= right; k++)
        if (ITEMless(aux[i], aux[j]))
            a[k] = aux[i++];
        else
            a[k] = aux[j--];
}

void mergesort(Item a[], int left, int right) {
    int mid = (right + left) / 2;
    if (right <= left)
        return ;
    mergesort(a, aux, left, mid);
    mergesort(a, aux, mid+1, right);
    merge(a, aux, left, mid, right);
}
```

Striking feature:
no HUGE numbers!

comparisons
Theory ~ $N \log_2 N = 9,966$
Actual = 9,976
Quicksort

Quicksort.

- Partition array so that:
 - some partitioning element $a[m]$ is in its final position
 - no larger element to the left of m
 - no smaller element to the right of m
Quicksort

- Partition array so that:
 - some partitioning element $a[m]$ is in its final position
 - no larger element to the left of m
 - no smaller element to the right of m
- Sort each "half" recursively.

Sort each "half."
Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

- Partition array so that:
 - some partitioning element \(a[m] \) is in its final position
 - no larger element to the left of \(m \)
 - no smaller element to the right of \(m \)
- Sort each "half" recursively.

```c
void quicksort(Item a[], int left, int right) {
    int m;
    if (right > left) {
        m = partition(a, left, right);
        quicksort(a, left, m - 1);
        quicksort(a, m + 1, right);
    }
}
```

quicksort.c (see Sedgewick Program 7.1)
Sorting Case Study: quicksort

Insertion sort (brute-force)
Mergesort (divide-and-conquer)
Quicksort (conquer-and-divide)

- Partition array so that:
 - some partitioning element $a[m]$ is in its final position
 - no larger element to the left of m
 - no smaller element to the right of m

- Sort each "half" recursively.

- How do we partition efficiently?
 - $N - 1$ comparisons
 - easy with auxiliary array
 - better solution: use no extra space!
Implementing Partition

```c
int partition(Item a[], int left, int right) {
    int i = left-1;  /* left to right pointer */
    int j = right;   /* right to left pointer */
    Item p = a[right];  /* partition element */

    while(1) {
        while (ITEMless(a[++i], p)) ;
        while (ITEMless(p, a[--j]))
            if (j == left)
                break;

        if (i >= j)
            break;
        ITEMswap(&a[i], &a[j]);
    }

    ITEMswap(&a[i], &a[right]);
    return i;
}
```

```plaintext
partition (see Sedgewick Program 7.2)
find element on left to swap
look for element on right to swap, but don’t run off end
pointers cross
swap partition element
```
void quicksort(Item a[], int left, int right) {
 int p;
 if (right <= left)
 return;
 p = partition(a, left, right);
 quicksort(a, left, p-1);
 quicksort(a, p+1, right);
}
Profiling Quicksort Empirically

Quicksort prof.out (cont)

```c
int partition(Item a[], int left, int right) {
    int i = left-1, j = right;
    Item swap, p = a[right];

    while (ITEMless(a[++i], p)) {  // (1)
        while (ITEMless(p, a[--j]))  // (2)
            if (j == left) break;  // (4)
        if (i >= j) break;  // (5)
        ITEMswap(&a[i], &a[j]);  // (6)
    }
    ITEMswap(&a[i], &a[right]);  // (7)
    return i;  // (8)
}
```

Striking feature: no HUGE numbers!
Profiling Quicksort Analytically

Intuition.

- Assume all elements unique.
- Assume we always select median as partition element.
- \(T(N) = \# \) comparisons.

\[
T(N) = \begin{cases}
0 & \text{if } N = 1 \\
2T(N/2) + \frac{N}{2} & \text{otherwise}
\end{cases}
\]

If \(N \) is a power of 2.
\[
\Rightarrow \quad T(N) = N \log_2 N
\]

Can you find median in \(O(N) \) time?

Profiling Quicksort Analytically

Partition on median element.

Partition on rightmost element.

Partition on random element.

Check profile.

- $2N \log_e N$: 13815 vs. 12372 (5708 + 6664).
- Running time for $N = 100,000$ about 1.2 seconds.
- How long for $N = 1$ million?
 - slightly more than 10 times (about 12 seconds)
Sorting Analysis Summary

Running time estimates:
- Home pc executes 10^8 comparisons/second.
- Supercomputer executes 10^{12} comparisons/second.

<table>
<thead>
<tr>
<th>computer</th>
<th>thousand</th>
<th>million</th>
<th>billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>home</td>
<td>instant</td>
<td>2.8 hours</td>
<td>317 years</td>
</tr>
<tr>
<td>super</td>
<td>instant</td>
<td>1 second</td>
<td>1.6 weeks</td>
</tr>
</tbody>
</table>

Insertion Sort (N^2)

<table>
<thead>
<tr>
<th>thousand</th>
<th>million</th>
<th>billion</th>
</tr>
</thead>
<tbody>
<tr>
<td>instant</td>
<td>0.3 sec</td>
<td>6 min</td>
</tr>
<tr>
<td>instant</td>
<td>instant</td>
<td>instant</td>
</tr>
</tbody>
</table>

Quicksort ($N \log N$)

Lesson: good algorithms are more powerful than supercomputers.
Design, Analysis, and Implementation of Algorithms

Algorithm.
- "Step-by-step recipe" used to solve a problem.
- Generally independent of programming language or machine on which it is to be executed.

Design.
- Find a method to solve the problem.

Analysis.
- Evaluate its effectiveness and predict theoretical performance.

Implementation.
- Write actual code and test your theory.
Sorting Analysis Summary

Comparison of Different Sorting Algorithms

<table>
<thead>
<tr>
<th>Attribute</th>
<th>insertion</th>
<th>quicksort</th>
<th>mergesort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Worst case complexity</td>
<td>(N^2)</td>
<td>(N^2)</td>
<td>(N \log_2 N)</td>
</tr>
<tr>
<td>Best case complexity</td>
<td>(N)</td>
<td>(N \log_2 N)</td>
<td>(N \log_2 N)</td>
</tr>
<tr>
<td>Average case complexity</td>
<td>(N^2)</td>
<td>(N \log_2 N)</td>
<td>(N \log_2 N)</td>
</tr>
<tr>
<td>Already sorted</td>
<td>(N)</td>
<td>(N^2)</td>
<td>(N \log_2 N)</td>
</tr>
<tr>
<td>Reverse sorted</td>
<td>(N^2)</td>
<td>(N^2)</td>
<td>(N \log_2 N)</td>
</tr>
<tr>
<td>Space</td>
<td>(N)</td>
<td>(N)</td>
<td>(2N)</td>
</tr>
<tr>
<td>Stable</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Sorting algorithms have different performance characteristics.

- Other choices: BST sort, bubblesort, heapsort, shellsort, selection sort, shaker sort, radix sort, distribution sort, solitaire sort, hybrid methods.
- Which one should I use?
Computational Complexity

Framework to study efficiency of algorithms.
- Depends on machine model, average case, worst case.
- UPPER BOUND = algorithm to solve the problem.
- LOWER BOUND = proof that no algorithm can do better.
- OPTIMAL ALGORITHM: lower bound = upper bound.

Example: sorting.
- Measure costs in terms of comparisons.
- Upper bound = $N \log_2 N$ (mergesort).
 - quicksort usually faster, but mergesort never slow
- Lower bound = $N \log_2 N - N \log_2 e$
 (applies to any comparison-based algorithm).
 - Why?
Computational Complexity

Caveats.
- Worst or average case may be unrealistic.
- Costs ignored in analysis may dominate.
- Machine model may be restrictive.

Complexity studies provide:
- Starting point for practical implementations.
- Indication of approaches to be avoided.
Summary

How can I evaluate the performance of a proposed algorithm?
- Computational experiments.
- Complexity theory.

What if it's not fast enough?
- Use a faster computer.
 - performance improves incrementally
- Understand why.
- Discover a better algorithm.
 - performance can improve dramatically
 - not always easy / possible to develop better algorithm
Lecture T5: Extra Slides
Average Case vs. Worst Case

Worst-case analysis.
- Take running time of worst input of size N.
- Advantages:
 - performance guarantee
- Disadvantage:
 - pathological inputs can determine run time

Average case analysis.
- Take average run time over all inputs of some class.
- Advantage:
 - can be more accurate measure of performance
- Disadvantage:
 - hard to quantify what input distributions will look like in practice
 - difficult to analyze for complicated algorithms, distributions
 - no performance guarantee
Profiling Quicksort Analytically

Average case.
 - Assume partition element chosen at random and all elements are unique.
 - Denote i^{th} largest element by i.
 - Probability that i and j (where $j > i$) are compared $= \frac{2}{j - i + 1}$

$$\text{Expected \# of comparisons} = \sum_{i < j} \frac{2}{j - i + 1} = 2 \sum_{i=1}^{N} \sum_{j=2}^{i} \frac{1}{j}$$
$$\leq 2N \sum_{j=1}^{N} \frac{1}{j}$$
$$\approx 2N \int_{1}^{N} \frac{1}{j}$$
$$= 2N \ln N$$
Comparison Based Sorting Lower Bound

Decision Tree of Program
Comparison Based Sorting Lower Bound

Lower bound = $N \log_2 N$ (applies to any comparison-based algorithm).

- Worst case dictated by tree height h.
- $N!$ different orderings.
- One (or more) leaves corresponding to each ordering.
- Binary tree with $N!$ leaves must have

$$
\begin{align*}
h & \geq \log_2 (N !) \\
& \geq \log_2 (N / e)^N \\
& = N \log_2 N - N \log_2 e \\
& = \Theta (N \log_2 N)
\end{align*}
$$

Stirling’s formula