Lecture T4: Computability
A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:

- N card types (can use as many of each type as possible).
- Each card has a top string and bottom string.

Example 1:

```
<table>
<thead>
<tr>
<th></th>
<th>BAB</th>
<th>A</th>
<th>AB</th>
<th>BA</th>
<th>N = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>ABA</td>
<td>B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Puzzle:

- Is it possible to arrange cards so that top and bottom strings are the same?
A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:

- N card types (can use as many of each type as possible).
- Each card has a top string and bottom string.

Example 1:

<table>
<thead>
<tr>
<th></th>
<th>BAB</th>
<th>A</th>
<th>AB</th>
<th>BA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>ABA</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 4

Puzzle:

- Is it possible to arrange cards so that top and bottom strings are the same?

Solution 1.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>BA</th>
<th>BAB</th>
<th>AB</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABA</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>ABA</td>
</tr>
</tbody>
</table>

N = 4
A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:

- N card types (can use as many of each type as possible).
- Each card has a top string and bottom string.

Example 2:

\[
\begin{array}{cccc}
A & ABA & B & A \\
BAB & B & A & B \\
0 & 1 & 2 & 3 \\
\end{array}
\]

N = 4

Puzzle:

- Is it possible to arrange cards so that top and bottom strings are the same?
A Puzzle ("Post’s Correspondence Problem")

Given a set of cards:
- N card types (can use as many of each type as possible).
- Each card has a top string and bottom string.

Example 2:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ABA</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>BAB</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

N = 4

Puzzle:
- Is it possible to arrange cards so that top and bottom strings are the same?

Solution 2.
PCP Puzzle Contest

Contest:
- Additional restriction: string must start with 'S'.
- Be the first to solve this puzzle!
 - extra credit for first correct solution
- Check solution by putting STRING ONLY (blanks and line breaks OK) in a file solution.txt, then type
 `pcp126 < solution.txt`

Hopeless challenge for the bored:
- Write a program that reads a set of Post cards, and determines whether or not there is a solution.
Overview

Formal language.
- Rigorously express computational problems.
- Ex: \(L = \{ 2, 3, 5, 7, 11, 13, 17, \ldots \} \)

Abstract machines recognize languages.
- Ex. Is 977 prime? Is 977 in \(L \)?
- Essence of computers.

This lecture:
- What is an "algorithm"?
- Is it possible, in principle, to write a program to solve any problem (recognize any language)?
Background

Abstract models of computation help us learn:
- Nature of machines needed to solve problems.
- Relationship between problems and machines.
- Intrinsic difficulty of problems.

As we make machines more powerful, we can recognize more languages.
- Are there languages that no machine can recognize?
- Are there limits on the power of machines that we can imagine?

Pioneering work in the 1930’s. (Princeton = center of universe)
- Turing, Church, von Neumann, Gödel. (inspiration from Hilbert)
- Automata, languages, computability, complexity, logic, rigorous definition of "algorithm."
Hilbert’s 10th Problem.

“Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root.”

- Example 1: $f(x, y, z) = 6x^3yz^2 + 3xy^2 - x^3 - 10$
 - No, since $f(5, 3, 0)$ is a root.

- Example 2: $f(x, y) = x^2 + y^2 - 3$
 - No.

- Example 3: $f(x, y, z) = x^n + y^n - z^n$
 - No if $n \geq 3$ and $x, y, z > 0.$ (Fermat’s Last Theorem)

Andrew Wiles, 1995
Undecidable Problems

Hilbert’s 10th Problem.

- “Devise a process according to which it can be determined by a finite number of operations whether a given multivariate polynomial has an integral root.”

- Problem resolved in very surprising way. (Matijasevič, 1970)

- How can we assert such a mind-boggling statement?
Undecidable Problems

Hilbert’s 10th Problem.
Post’s Correspondence Problem.
Halting Problem.

- Write a C program that reads in another program and its inputs, and decides whether or not it goes into an infinite loop.
 - infinite loop often signifies a bug

- Program 1.
 - 8 6 4 2 4 2 4 2 4 2 4 2 4 2 4
 - 9 7 5 3 1

```c
odd.c

... 
while (x > 1) {
  if (x > 2) 
    x = x - 2;
  else 
    x = x + 2;
}
```
Undecidable Problems

Hilbert’s 10th Problem.
Post’s Correspondence Problem.
Halting Problem.

- Write a C program that reads in another program and its inputs, and decides whether or not it goes into an infinite loop.
 - infinite loop often signifies a bug

- Program 2.
 - 8 4 2 1
 - 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

```c
#include <stdio.h>

int main() {
    int x = 7;
    while (x > 1) {
        printf("%d ", x);
        if (x % 2 == 0)
            x = x / 2;
        else
            x = 3 * x + 1;
    }
    return 0;
}
```

hailstone.c
Undecidable Problems

Hilbert’s 10th Problem.
Post’s Correspondence Problem.
Halting Problem.
Program Equivalence.
Optimal Data Compression.
Virus Identification.

Impossible to write C program to solve any of these problem!
TM : As Powerful As TOY Machine

Turing machines are strictly more powerful than FSA, PDA, LBA because of infinite tape memory.
- Power = ability to recognize languages.

Turing machines are at least as powerful as a TOY machine:
- Encode state of memory, PC, etc. onto Turing tape.
- Develop TM states for each instruction.
- Can do because all instructions:
 - examine current state
 - make well-define changes depending on current state

Works for all real machines.
- Can simulate at machine level, gate level,
TM : Equal Power as TOY and C

Turing machines are equivalent in power to C programs.
- C program \Rightarrow TOY program (Lecture A2)
- TOY program \Rightarrow TM (previous slide)
- TM \Rightarrow C program (TM simulator, Lecture T2)

Works for all real programming languages.

Assumption: TOY machine and C program have unbounded amount of memory. Otherwise TM is strictly more powerful.
Church-Turing Thesis

Church-Turing thesis (1936):
Q. Which problems can a Turing machine solve?
 A. Any problem that any real computer can solve.

"Thesis" and not a mathematical theorem.

Implications:
- Provides rigorous definition for algorithm.
- Universality among computational models.
 - if a problem can be solved by TM, then it can be solved on EVERY general-purpose computer.
 - if a problem can’t be solved by TM, then it can’t be solve on ANY physical computer
Evidence Supporting Church-Turing Thesis

Imagine TM with more power.
- Composition of TM’s, multiple heads, more tapes, 2D tapes.
- Nondeterminism.

Different ways to define "computable."
- TM, circuits, grammar, λ-calculus, μ-recursive functions.
- Conway's game of life.

Conventional computers.
- ENIAC, TOY, Pentium III, . . .

New speculative models of computation.
- DNA computers, quantum computers, soliton computers.
A More Powerful Computer

Post machine (PCP-286).
- Input: set of Post cards.
- Output.
 - YES light if PCP is solvable for these cards
 - NO light if PCP has no solution

PCP is strictly more powerful than:
- Turing machine.
- TOY machine.
- C programming language.
- iMac.
- Any conceivable super-computer.

Why doesn’t it violate Church-Turing thesis?
Each TM solves one particular problem.
 - Ex: is the integer x prime?
 - Analogy: computer algorithm.
 - Similar to ancient special-purpose computers (Analytic Engine) prior to von Neumann stored-program computers.

Goal: "general purpose machine" that can solve many problems.
 - Simulate the operations of any special-purpose TM.
 - Analogy: computer than can execute any algorithm.
 - How?
Representation of a Turing Machine

Special-purpose TM consists of 3 ingredients.

- TM program.
- Initial tape contents.
- Current TM state.
Universal Turing Machine (UTM),
- A specific TM that simulates operations of any TM.

How to create.
- Encode 3 ingredients of TM using 3 tapes.
- UTM simulates the TM.
 - read tape 1
 - read tape 3
 - consult tape 2 for what to do
 - write tape 1 if necessary
 - move head 1
 - write tape 3

Tape 1: encode TM tape

Tape 2: encode TM program

Tape 3: encode TM current state
Universal Turing Machine

Universal Turing Machine (UTM),
- A specific TM that simulates operations of any TM.

How to create.
- Encode 3 ingredients of TM using 3 tapes.
- UTM simulates the TM.
- Like the fetch-increment-execute cycle of TOY.
- Can reduce 3-tape TM to single tape one.
Implications of Universal Turing Machine

Existence of UTM has profound implications.

- "Invention" of general-purpose computer.
 - stimulated development of stored-program computers (von Neumann machines)
- "Invention" of software.
- Universal framework for studying limitations of computing devices.
- Can simulate any machine (including itself)!
Halting Problem

Halting problem.
- Devise a TM that reads in another TM (encoded in binary) and its initial tape, and determines whether or not that TM would ever reach a yes or no state.
- Write a C program that reads in another program and its inputs, and determines whether or not it goes into an infinite loop.

Halting problem is unsolvable.
- No TM can solve this problem.
- Not possible to write a C program either.

We prove that the halting problem is not solvable.
Grelling’s Paradox:

- Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

<table>
<thead>
<tr>
<th>autological adjectives</th>
<th>heterological adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>pentasyllabic</td>
<td>bisyllabic</td>
</tr>
<tr>
<td>awkwardnessful</td>
<td>palindromic</td>
</tr>
<tr>
<td>recherché</td>
<td>edible</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

How do we categorize heterological?
Grelling’s paradox:

- Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

<table>
<thead>
<tr>
<th>autological adjectives</th>
<th>heterological adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>pentasyllabic</td>
<td>bisyllabic</td>
</tr>
<tr>
<td>awkwardnessful</td>
<td>palindromic</td>
</tr>
<tr>
<td>recherché</td>
<td>edible</td>
</tr>
<tr>
<td>heterological</td>
<td></td>
</tr>
</tbody>
</table>

- How do we categorize heterological?
 - suppose it’s autological
Warmup: Grelling’s Paradox

Grelling’s paradox:

- Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

<table>
<thead>
<tr>
<th>Autological adjectives</th>
<th>Heterological adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>pentasyllabic</td>
<td>bisyllabic</td>
</tr>
<tr>
<td>awkwardnessful</td>
<td>palindromic</td>
</tr>
<tr>
<td>recherché</td>
<td>edible</td>
</tr>
<tr>
<td>heterological</td>
<td>heterological</td>
</tr>
</tbody>
</table>

- How do we categorize heterological?
 - suppose it’s heterological
Warmup: Grelling’s Paradox

Grelling’s paradox:
- Divide all adjectives into two categories:
 - autological: self-descriptive
 - heterological: not self-descriptive

<table>
<thead>
<tr>
<th>autological adjectives</th>
<th>heterological adjectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>pentasyllabic</td>
<td>bisyllabic</td>
</tr>
<tr>
<td>awkwardnessful</td>
<td>palindromic</td>
</tr>
<tr>
<td>recherché</td>
<td>edible</td>
</tr>
</tbody>
</table>

- How do we categorize heterological?
 - not possible
 - we can’t have words with these meanings!
 (or we can’t partition adjectives into these two groups)
Halting Problem Proof

Assume the existence of $\text{Halt}(f, x)$ that takes as input: any function f and its input x, and outputs yes if $f(x)$ halts, and no otherwise.

- Proof by contradiction.
- Note: $\text{Halt}(f, x)$ always returns yes or no.
 (infinite loop not possible)

```c
#include <stdbool.h>

// Function prototype
int Halt(char f[], char x[]);

int main() {
    // Call Halt function
    return 0;
}
```

Halt(f, x)

```c
int Halt(char f[], char x[]) {
    if ( ??? )
        return YES;
    else
        return NO;
}
```

function f and its input x encoded as strings
Halting Problem Proof

Assume the existence of \(Halt(f, x) \) that takes as input: any function \(f \) and its input \(x \), and outputs \(\text{yes} \) if \(f(x) \) halts, and \(\text{no} \) otherwise.

- Construct program \(\text{Strange}(f) \) as follows:
 - calls \(Halt(f, f) \)
 - halts if \(Halt(f, f) \) outputs \(\text{no} \)
 - goes into infinite loop if \(Halt(f, f) \) outputs \(\text{yes} \)

- In other words:
 - if \(f(f) \) does not halt then \(\text{Strange}(f) \) halts
 - if \(f(f) \) halts then \(\text{Strange}(f) \) does not halt

```c
void Strange(char f[]) {
    if (Halt(f, f) == NO) return;
    else
        while(1) // infinite loop
}
```
Halting Problem Proof

Assume the existence of $\text{Halt}(f,x)$ that takes as input: any function f and its input x, and outputs yes if $f(x)$ halts, and no otherwise.

- Construct program $\text{Strange}(f)$ as follows:
 - calls $\text{Halt}(f, f)$
 - halts if $\text{Halt}(f, f)$ outputs no
 - goes into infinite loop if $\text{Halt}(f, f)$ outputs yes

- In other words:
 - if $f(f)$ does not halt then $\text{Strange}(f)$ halts
 - if $f(f)$ halts then $\text{Strange}(f)$ does not halt

- Call Strange with ITSELF as input.
 - if $\text{Strange}(\text{Strange})$ does not halt then $\text{Strange}(\text{Strange})$ halts
 - if $\text{Strange}(\text{Strange})$ halts then $\text{Strange}(\text{Strange})$ does not halt

- Either way, a contradiction. Hence $\text{Halt}(f,x)$ cannot exist.
Consequences

Halting problem is "not artificial."

- Undecidable problem reduced to simplest form to simplify proof.
- Closely related to practical problems.
 - Hilbert’s 10th problem, Post’s correspondence problem, program equivalence, optimal data compression

How to show new problem X is undecidable?

- Use fact that Halting problem is undecidable.
- Design algorithm to solve Halting problem, using (alleged) algorithm for X as a subroutine.
- See Reduction in Lecture T6.
Implications

Practical:
- Work with limitations.
- Recognize and avoid unsolvable problems.
- Learn from structure.
 - same theory tells us about efficiency of algorithms (see T5)

Philosophical (caveat: ask a philosopher):
- We "assume" that any step-by-step reasoning will solve any technical or scientific problem.
- "Not quite" says the halting problem.
- Anything that is like (could be) a computer has the same flaw:
WHAT IS AN ALGORITHM?

Formally, Turing machine.

TURING’S KEY IDEAS:

Computing is same as manipulating symbols.
 - can encode numbers as strings

Existence of general-purpose computer (UTM).
 - programmable machine

WHAT IS A GENERAL-PURPOSE COMPUTER (UTM)?

Can be "programmed" to implement any algorithm.

iMac, Dell, Sun UltraSparc, TOY (assuming unlimited memory).

IS IT POSSIBLE, IN PRINCIPLE, TO WRITE A PROGRAM TO SOLVE ANY PROBLEM?

No.