Two fundamental questions.
- What can a computer do?
- What can a computer do with limited resources?

General approach.
- Don’t talk about specific machines or problems.
- Consider minimal abstract machines.
- Consider general classes of problems.

Why Learn Theory

In theory . . .
- Deeper understanding of what is a computer and computing.
- Foundation of all modern computers.
- Pure science.
- Philosophical implications.

In practice . . .
- Web search: theory of pattern matching.
- Sequential circuit: theory of finite state automata.
- Compilers: theory of context free grammar.
- Cryptography: theory of complexity.
- Data compression: theory of information.
Finite State Automata

Simple machine with N states.
- Start in state 0.
- Read an input bit.
- Move to new state - depends on input bit and current state
- Stop when last bit read.
 - 'yes' if end in accept state(s)
 - 'no' otherwise

'Yes' also called accepted or recognized inputs from a language.

Transition Table

<table>
<thead>
<tr>
<th>State</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

C Code for FSA

```c
#include <stdio.h>
#define STATES 4
#define START_STATE 0
#define ACCEPT_STATE 3

int main(void)
int main(void) {
t  
int i, state = START_STATE;
int transition[STATES][2] =
  {{2, 1}, {3, 2}, {2, 2}, {2, 1}};

  while (scanf("%1d", &i) != EOF)
state = transition[state][i];

  if (state == ACCEPT_STATE)
    printf("Yes.\n");
  else
    printf("No.\n");
  return 0;
}
```

A Second Example

Consider the following two state FSA.

What bit strings does it accept?
- Yes: 0, 11110, 00000, 100100111011
- No: 1, 1111, 00, 1011100111011

An Application: Bounce Filter

Bounce filter: remove isolated b's and g's in input.
- Input: b b g b b b g g b g g g g b b b b
- Output (one-bit delay): w b b b b b b g g g g g g g b b b b

no accept state – instead output color of each state you visit
An Application: Bounce Filter

Bounce filter: remove isolated b's and g's in input.
- Input: \(b \ b \ g \ b \ b \ b \ g \ g \ g \ g \ g \ b \ b \ b \ b \)
- Output (one-bit delay): \(w \ b \ b \ b \ b \ b \ b \ g \ g \ g \ g \ g \ g \ g \ g \ b \ b \ b \ b \)

State interpretations.
- W: start
- BB: at least two consecutive b's.
- G: sequence of b's followed by g.
- GG: at least two consecutive g's.
- B: sequence of g's followed by b.

Text Searching

Build an FSA that accepts all strings that contain 'acat' as a substring.
- tatgacatg
- acacatg

Start building:

State name represents largest prefix of "acat" that input currently matches.

Text Searching

Build an FSA that accepts all strings that contain 'acat' as a substring.
- tatgacatg
- acacatg

Finish building:

Web Search Application

Web search engines build FSA's.

Standard Web search for: cos 126 pattern matching

Search engines have different methods for specifying patterns.
- Which one is most powerful?
- Theory of computation helps us address such issues.
Unix Pattern Matching Tool: egrep

General regular expressions pattern matching.

- Acts as filter.
- Sends lines from stdin to stdout that "match" argument string.

Elementary Examples

- `% egrep 'beth' classlist`
 03/Smythe/Elizabeth/6/esmythe
 03/Bethke/Kristen/3/kbethke

- `% egrep '/3/' classlist`
 03/Marin/Anthony/3/amarin
 03/Arellano/Belen/3/arellano
 03/Weiss/Jacob/3/weiss

- `% egrep 'zeuglodon' mobydick.txt`
 rechristened the monster zeuglodon and in his

- `% egrep 'acat' human.data`
 gcaacgacacaaacatgcatttt

Crossword Puzzle or Scrabble Too Hard?

- `/usr/dict/words` is a list of (25,143) words in dictionary.
- `/u/cs126/files/textfiles/wordlist.txt` is a list of 234,936 words.

More Examples

- `% egrep 'hh' /usr/dict/words`
 beachhead
 highhanded
 withheld
 withhold

- `% egrep 'u.u.u' /usr/dict/words`
 cumulus

- `% egrep '..oo..oo' /usr/dict/words`
 bloodroot
 nincompoophood
 schoolbook
 schoolroom

Egrep Pattern Conventions

Conventions for egrep:

- `c` any non-special character matches itself
- `.` any single character
- `r*` zero or more occurrence of `r`
- `r+` one or more occurrence of `r`
- `r?` zero or one occurrence of `r`
- `(r)` grouping
- `r1|r2` logical OR
- `[aeiou]` any vowel
- `[^ aeiou]` any non-vowel
- `^` beginning of line
- `$` end of line

Flags for egrep:

- `egrep -v` match all lines except those specified by pattern

Still More Examples

Unix

- `% egrep 'n(ie|ei)ther' /usr/dict/words`
 neither

- `% egrep 'actg(atac)*gcta' human.data`
 ggt actg gcta ggac

- `% egrep 'actg(atac)*gcta' student.data`
 tatactg atacatacatac gcta ttac

- `% egrep '^y.(..)*y$' /usr/dict/words`
 yesterday

- `% egrep -v '[aeiou]' /usr/dict/words |`
 rhythm
 syzygy

Do spell checking by specifying what you know.

Starts and ends with y, odd number of characters.

Find all words with no vowels and 6 or more letters.
Specifying "pattern" for `egrep` can be complex.

```
[^aeiou]*a[^aeiou]*e[^aeiou]*i[^aeiou]*o[^aeiou]*u[^aeiou]*
```

Which aspects are essential?
- Unix `egrep` regular expressions are useful.
- But more complex than theoretical minimum.

Regular expressions.
- Match WHOLE string.
 - regular expression: 0(0|1)*1
 - `egrep` pattern: `^0(0|1)*1$`
- `c` any non-special character matches itself
- `r*` zero or more occurrence of `r`
- `(r)` grouping
- `r1|r2` logical OR
- `r1 · r2` concatenate (usually suppress `·` symbol)
- `.` any single character
- `[aeiou]` any vowel
- `[^aeiou]` any non-vowel
- `r+` one or more occurrences of `r`
- `r?` zero or one occurrence of `r`
- `-v` match all patterns except...

What kinds of patterns can be specified by regular expressions?
(all but one of following)

<table>
<thead>
<tr>
<th>All bit strings that:</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin with 0 and end with 1.</td>
<td>0001011011</td>
</tr>
<tr>
<td>Equal number of 0's and 1's.</td>
<td>0111100010</td>
</tr>
<tr>
<td>Have no consecutive 1's.</td>
<td>0100101001</td>
</tr>
<tr>
<td>Has and odd number of 0's.</td>
<td>0100101011</td>
</tr>
<tr>
<td>Has 011010 as a substring.</td>
<td>0001101000</td>
</tr>
</tbody>
</table>

```
0(0|1)*1
```

```
not needed
```

<table>
<thead>
<tr>
<th>All bit strings that:</th>
<th>Regular Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin with 0 and end with 1.</td>
<td>0(0</td>
</tr>
<tr>
<td>Equal number of 0's and 1's.</td>
<td>not possible</td>
</tr>
<tr>
<td>Have no consecutive 1's.</td>
<td>(0</td>
</tr>
<tr>
<td>Has and odd number of 0's.</td>
<td>(10101*)(101*)</td>
</tr>
<tr>
<td>Has 011010 as a substring.</td>
<td>(0</td>
</tr>
</tbody>
</table>
Formal Languages

An ALPHABET is a finite set of symbols.
- Binary alphabet = \{0, 1\}
- Lower-case alphabet = \{a, b, c, d, ..., y, z\}
- Genetic alphabet = \{a, c, t, g\}

A STRING is a finite sequence of symbols in the alphabet.
- ‘0111011011’ is a string in the binary alphabet.
- ‘tigers’ is a string in the lower-case alphabet.
- ‘acctgacacta’ is a string in the genetic alphabet.

A FORMAL LANGUAGE is an (unordered) set of strings in an alphabet.
- Can have infinitely many strings.
- Examples:
 - \{0, 010, 0110, 01110, 011110, 0111110, ...\}
 - \{11, 1111, 111111, 11111111, 111111111, ...\}

Formal Languages

Can cast any computation as a language recognition problem.
- Is x = 23,536,481,273 a prime number?

FSA.
- Machine determines whether a string is in language.

Regular expression.
- Shorthand method for specifying a language.
- \((1*01*01*)*(1*01*)\)

Duality Between FSA’s and RE’s

Observation: for each FSA we create, we can find a regular expression that matches the same strings that the FSA accepts.

Is this always the case?

What about the OTHER way around?

Stay tuned: see Lecture T2.

Limitations of FSA

FSA are simple machines.
- N states \(\Rightarrow\) can’t ”remember” more than N things.
- Some languages require ”remembering” more than N things.

No FSA can recognize the language of all bit strings with an equal number of 0’s and 1’s.

A warmup exercise:

If 01xyz accepted then so is 000001xyz
Limitations of FSA

No FSA can recognize the language of all bit strings with an equal number of 0's and 1's.

- Suppose an N-state FSA can recognize this language.
- Consider following input: 0000000111111111

\[N+1 \text{ 0's} \quad N+1 \text{ 1's} \]

- FSA must accept this string.
- Some state x is revisited during first N+1 0's since only N states.

\[0000000111111111 \quad x \quad x \]

- Machine would accept same string without intervening 0's.

\[000111111111 \]

- This string doesn't have an equal number of 0's and 1's.

Looking Ahead

Today.
- Defined a simple abstract machine = FSA.
- Capable of pattern matching.
- Incapable of "counting."
- Need to consider more powerful machines.

Future lectures.
- Define an abstract machine.
- Understand how it works and what it can do.
- Find things it can't do.
- Define a more powerful machine.
- Repeat until we run out of problems or machines.

Lecture T1: Supplemental Notes

C Code for FSA

```c
#include <stdio.h>
int main(void) {
    int c, state = 0;
    while (((c = getchar()) != EOF) {  
        if (state == 0 && c == '0') state = 2;
        if (state == 0 && c == '1') state = 1;
        if (state == 1 && c == '0') state = 3;
        if (state == 1 && c == '1') state = 2;
        if (state == 2 && c == '0') state = 2;
        if (state == 2 && c == '1') state = 2;
        if (state == 3 && c == '0') state = 2;
        if (state == 3 && c == '1') state = 1;
    }

    if (state == 3)
        printf("Yes.\n");
    else
        printf("No.\n");
    return 0;
}
```

Hmm. Which will we run out of first?

straightforward to convert FSA's into C program or to build with hardware.
A Fourth Example

FSA to decide if integer (represented in binary) is divisible by 3?

What bit strings does it accept?
- Yes: 11 (3\(_{10}\)), 110 (6\(_{10}\)), 1001 (9\(_{10}\)), 1100 (12\(_{10}\)), 1111 (15\(_{10}\)), 10011 (18\(_{10}\)), integers divisible by 3.
- No: 1 (1\(_{10}\)), 10 (2\(_{10}\)), 100 (4\(_{10}\)), 101 (5\(_{10}\)), 111 (7\(_{10}\)), integers not divisible by 3.

A Fourth Example

FSA to decide if input (convert binary to decimal) is divisible by 3?

How does it work?
- State 0: Input so far is divisible by 3.
- State 1: Input has remainder 1 upon division by 3.
- State 2: Input has remainder 2 upon division by 3.
- Transition example.
 - Input 1100 (12\(_{10}\)) ends in state 0.
 - If next bit is 0 then stay in state 0: 11000 (24\(_{10}\)).
 - Adding 0 to last bit is same as multiplying number by 2. Remains divisible by 3.

Regular Expressions

Rules for creating regular expressions (RE’s):
- 0 or 1 or \(\varepsilon\) symbols
- (a) grouping
- ab concatenation
- a + b logical OR
- a* closure (0 or more replications)

where a and b are regular expressions.

Examples:
- \((10)^*\) \(\varepsilon, 10, 1010, 101010, \ldots\)
- \(0(0 + 1)^*0\) 00, 000, 010, 0000, 0110, \ldots
- \((1*01*01*01*)^*\) \(\varepsilon, 000, 00000, 11101110101111, \ldots\)

\(\varepsilon = \) empty string