Lecture P6: Recursion

Overview

What is recursion?
- When one function calls itself directly or indirectly.

Why learn recursion?
- New mode of thinking.
- Powerful programming tool.
- Many computations are naturally self-referential.
 - A Unix directory contains files and other directories
 - Euclid’s gcd algorithm
 - Linked lists and trees
 - GNU = GNU’s Not Emacs

Overview

How does recursion work?

How does a function call work?
- A function lives in a local environment:
 - Values of local variables
 - Which statement the computer is currently executing

- When \(f() \) calls \(g() \), the system
 - Saves local environment of \(f \)
 - Sets value of parameters in \(g \)
 - Jumps to first instruction of \(g \), and executes that function
 - Returns from \(g \), passing return value to \(f \)
 - Restores local environment of \(f \)
 - Resumes execution in \(f \) just after the function call to \(g \)

Implementing Functions

How does the compiler implement functions?

Return from functions in last-in first-out (LIFO) order.
- FUNCTION CALL: push local environment onto stack.
- RETURN: pop from stack and restore local environment.
A Simple Example

Goal: function to compute sum(n) = 0 + 1 + 2 + ... + n-1 + n.

- Simple ITERATIVE solution.

```c
int sum(int n) {
    int i, s = 0;
    for (i = 0; i <= n; i++)
        s += i;
    return s;
}
```

Note that changing the variable n in sum does not change the value in the calling function.

- Can also express using SELF-REFERENCE.

```c
int sum(int n) {
    if (n == 0)
        return 0;
    return n + sum(n-1);
}
```

This is just a stupid example to illustrate recursion.
- Don’t even need iteration, let alone recursion.
- 0 + 1 + 2 + ... + n = n(n+1) / 2

```c
int sum(int n) {
    return (n * (n+1)) / 2;
}
```

A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.
- Won’t “bottom-out” of recursion without a base case.
- Analog of infinite loops with for and while loops.

```c
void mystery1(int n) {
    printf("%d\n", n);
    if (n % 2 == 0)
        mystery1(n/2);
    else
        mystery1(3*n + 1);
}
```
A Bad Recursive Function

BASE CASE is special input for which the answer is trivial.

REDUCTION STEP makes input converge to base case.
 - Unknown whether program terminates for all positive integers n.
 - Stay tuned for Halting Problem in Lecture T4.

void mystery2(int n) {
 printf("%d\n", n);
 if (n <= 1)
 return;
 else if (n % 2 == 0)
 mystery2(n/2);
 else
 mystery2(3*n + 1);
}

Greatest Common Divisor

Find largest integer d that evenly divides into m and n.

\[
gcd(m, n) = \begin{cases}
 m & \text{if } n = 0 \\
 gcd(n, m \mod n) & \text{otherwise}
\end{cases}
\]

\[
gcd(1440, 408) = gcd(408, 216) \\
 = gcd(216, 120) \\
 = gcd(120, 48) \\
 = gcd(48, 24) \\
 = 24.
\]

Euclid (300 BC)

Greatest Common Divisor

Find largest integer d that evenly divides into m and n.

\[
\frac{m}{d}, \frac{n}{d} \quad \text{if } d \mid m, n
\]

\[
gcd(1440, 408) = gcd(408, 216) \\
 = gcd(216, 120) \\
 = gcd(120, 48) \\
 = gcd(48, 24) \\
 = 24.
\]

Number Conversion

To print binary representation of integer N:
 - Stop if N = 0.
 - Write ‘1’ if N is odd; ‘0’ if n is even.
 - Move pencil one position to left.
 - Print binary representation of \(\frac{N}{2} \).

\[
43 = 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 \\
 = 32 + 0 + 8 + 0 + 2 + 1
\]

Easiest way to compute by hand.
 - Corresponds directly with a recursive program.
Recursive Number Conversion

Computer naturally prints from left to right.

- So we need to first convert \(N / 2 \).
- Then write '0' or '1'.

```c
void convert(int N) {
    if (N == 0)
        return;
    convert(N / 2);
    printf("%d", N % 2);
}
```

Proof of correctness:
\[
N = 2 \times (N / 2) + (N \bmod 2)
\]

Convert to any base \(b \leq 10 \).

Exercise: extend to handle hexadecimal (base 16).

Possible Pitfalls With Recursion

Is recursion fast?

Fibonacci numbers:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

It takes a really long time to compute \(F(40) \).

```
int F(int n) {
    if (n == 0 || n == 1)
        return n;
    else
        return F(n-1) + F(n-2);
}
```

F(39) is computed once.
F(38) is computed 2 times.
F(37) is computed 3 times.
F(36) is computed 5 times.
F(35) is computed 8 times.
...
F(0) is computed 165,580,141 times.

331,160,281 function calls for F(40).
Possible Pitfalls With Recursion

Recursion can take a long time if it needs to repeatedly recompute intermediate results.

- DYNAMIC PROGRAMMING solution: save away intermediate results in a table.

```c
int knownF[1000] = {0};

int F(int n) {
    if (knownF[n] != 0)
        return knownF[n];
    else if (n == 0 || n == 1)
        return n;
    knownF[n] = F(n-1) + F(n-2);
    return knownF[n];
}
```

Fibonacci using dynamic programming

Stores ith Fibonacci number in ith element.

Uses only $2n$ recursive calls to compute $F(n)$.

Recursion vs. Iteration

Fact 1. Any recursive function can be written with iteration.
- Compiler implements recursion with stack.
- Can avoid recursion by explicitly maintaining a stack.

Fact 2. Any iterative function can be written with recursion.

Should I use iteration or recursion?
- Ease and clarity of implementation.
- Time/space efficiency.

Towers of Hanoi

Move all the discs from the leftmost peg to the rightmost one.

- Only one disc may be moved at a time.
- A disc can be placed either on empty peg or on top of a larger disc.

Towers of Hanoi demo

Start

Goal

Move N-1 smallest discs to pole B.
Move largest disc to pole C.
Move N-1 smallest discs to pole C.

Edouard Lucas (1883)
Towers of Hanoi: Recursive Solution

```c
#include <stdio.h>

void hanoi(int n, char from, char to) {
    char temp;
    if (n == 0)
        return;
    temp = getOtherPeg(from, to);
    hanoi(n-1, from, temp);
    printf("Move disc \%d from \%c to \%c.\n", n, from, to);
    hanoi(n-1, temp, to);
}

int main(void) {
    hanoi(4, 'A', 'C');
    return 0;
}
```

Unix

```bash
% gcc hanoi.c
% a.out
Move disc 1 from A to B.
Move disc 2 from A to C.
Move disc 1 from B to C.
Move disc 3 from A to B.
Move disc 1 from C to A.
Move disc 2 from C to B.
Move disc 1 from A to B.
Move disc 4 from A to C.
Move disc 1 from B to C.
Move disc 2 from B to A.
Move disc 1 from C to A.
Move disc 3 from B to C.
Move disc 1 from A to B.
Move disc 2 from A to C.
Move disc 1 from B to C.
```

Towers of Hanoi

Is world going to end (according to legend)?
- Monks have to solve problem with N = 40 discs.
- Computer algorithm should help.

Better understanding of recursive algorithm supplies non-recursive solution!
- Alternate between two moves:
 - Move smallest disc 1 peg to right (left) if N is even (odd).
 - Make only legal move not involving smallest disc.

See Sedgewick 5.2.

Summary

How does recursion work?
- Just like any other function call.

How does a function call work?
- Save away local environment using a stack.

Trace the executing of a recursive program.
- Use pictures.

Write simple recursive programs.
- Base case.
- Reduction step.
Root Finding

Given a function, find a root, i.e., a value x such that $f(x) = 0$.

- $f(x) = x^2 - x - 1$
- $\phi = \frac{1 + \sqrt{5}}{2} = 1.61803...$ is a root.

Assume f is continuous and l, r satisfy $f(l) < 0.0$ and $f(r) > 0.0$.

Reduction step:
- Maintain interval $[l, r]$ such that $f(l) < 0, f(r) > 0$.
- Compute midpoint $m = (l + r) / 2$.
- If $f(m) < 0$ then run algorithm recursively on interval is $[m, r]$.
- If $f(m) > 0$ then run algorithm recursively on interval is $[l, m]$.

Progress achieved at each step.
- Size of interval is cut in half.

Base case (when to stop):
- Ideally when $(0.0 == f(m))$, but this may never happen!
 - root may be irrational
 - machine precision issues
- Stop when $(x - 1)$ is sufficiently small.
 - guarantees m is sufficiently close to root

recursive bisection function

```c
#define EPSILON 0.000001

double f (double x) {
    return x*x - x - 1;
}

double bisect (double left, double right) {
    double mid = (left + right) / 2;
    if (right - left < EPSILON || 0.0 == f(mid))
        return mid;
    if (f(mid) < 0.0)
        return bisect(mid, right);
    return bisect(left, mid);
}
```