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Abstract 
Software pipelining is an important instruction 

scheduling technique for efficiently overlapping successive 
iterations of loops and executing them in parallel. Modulo 
scheduling is one approach for generating such schedules. 
This naner addresses an issue which has received little 
attentibn’ thus far, but which is non-trivial in its complexity: 
the task of generating correct, high-performance code once 
the modulo schedule has been generated, taking into 
account the nature of the loop and the register allocation 
strategy that will be used. This issue is studied both with and 
without hardware features that are specifically aimed at 
supporting modulo scheduling. 
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1 Introduction 

1.1 Software pipelining 
Software pipelining is a loop scheduling technique 

which yields highly optimized loop schedules. Algorithms 
for achieving software pipelining fall into two broad classes: 
l modulo scheduling, in which all iterations of the loop 

have a common schedule [ 161 and, 
l algorithms in which the loop is continuously unrolled 

and scheduled until a situation is reached allowing the 
schedule to wrap back on itself without draining the 
pipelines [ 151. 

Although, to the best of our knowledge, there have been no 
published measurements on this issue, it is the authors’ belief 
that the second class of software pipelining algorithms can 
cause unacceptably large code size expansion. 
Consequently, our interest is in modulo scheduling. In 
general, this is an NP-complete problem and subsequent 
work has focused on various heuristic strategies for 
performing modulo scheduling, e.g., [24, 9, 11, 10, 121 and 
the as yet unpublished heuristics in the Cydra 5 compiler 
[5]. Modulo scheduling of loops with early exits is described 
by Tirumalai, et al. [22]. Modulo scheduling is applicable to 
RISC, CISC, superscalar, superpipelined, and VLIW 
processors, and is useful whenever a processor 
implementation has instruction-level parallelism either by 
virtue of having pipelined operations or by allowing 
multiple operations to be issued per cycle. 

This paper describes code generation alternatives for 
modulo scheduled loops, both on processors such as the 
Cydra 5 [19] which have hardware support for modulo 
scheduling as well as on other instruction-level parallel 
processors which do not. The focus of the paper is on 
precisely specifying the alternatives and far less on 
evaluating their relative merit. Hardware support for 
modulo scheduling includes rotating register files (register 
files which support compiler-managed register renaming, 
also known as the MultiConnect in the Cydra 5), predicated 
execution and the Iteration Control Register (ICR) file (a 
boolean register file that holds the predicates), certain loop 
control opcodes [5, 19, 221 and support for speculative code 
motion [13]. The processor model assumes the ability to 
initiate multiple operations in a single cycle where each 
operation may have latency greater than one cycle. For 
brevity, we shall only discuss code generation for VLIW 

processors in which each instruction contains multiple 
operations, where each operation is equivalent to a RISC 
instruction. Nevertheless, everything discussed in this paper 
is applicable to RISC and superscalar processors as well; a 
left-to-right, top-to-bottom scan of the VLIW code would 
yield the corresponding RISC code. 

The examples discussed in this paper assume a processor 
with seven pipelined functional units as detailed in Table 1. 
The mnemonics for the various operations that are relevant 
to the examples are shown along with the unit on which 
those operations execute as well as their latencies. 

Table 1: Description of a sample processor . 

In the rest of this section, we provide a brief overview of 
modulo scheduling and discuss the problem that arises from 
the fact that after modulo scheduling, the successive 
lifetimes of a loop-variant variable are live concurrently. 
This section sets up the need for more sophisticated code 
schemas than have heretofore been discussed in the 
literature. In Section 2 we define and describe certain 
hardware capabilities to support modulo scheduling, some 
of which were nresent in the Cvdra 5. The motivation for _-. 
them is suppliid in Section 3 -which discusses the code 
schemas that must be used for DO-loops and WHILE-loops 
depending on whether or not these hardware features are 
provided. 

1.2 An Overview of Modulo Scheduling 

It is generally understood that there is inadequate 
instruction-level parallelism (ILP) between the operations 
within a single basic block and that higher levels of 
parallelism can only result from exploiting the ILP between 
successive basic blocks 123, 8, 20, 14, 3, 251. In the case of 
innermost loops, the successive basic blocks are the 
successive iterations of the loop. One method that has been 
used to exploit such inter-block parallelism has been to 
unroll the body of the loop some number of times and to 
overlap the execution of the multiple copies of the loop 
body [7]. Although this does yield an improvement in 
performance, the back-edge of the unrolled loop acts as a 
barrier to parallelism. Software pipelining, in general, and 
modulo scheduling, specifically, are scheduling techniques 
which attempt to achieve the performance benefits of 
extensive unrolling without actually doing so. 

The number of instruction issue cycles between the 
initiation of successive iterations in a modulo schedule is 
termed the initiation interval (II) [16]. This is also the 
number of (VLIW) instructions in the body of the modulo 
scheduled code if kernel unrolling (see below) has not been 
employed. The objective of modulo scheduling is to 
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engineer a common schedule for all iterations such that 
when successive iterations are initiated II cycles apart, no 
resource usage conflict arises between operations of either 
the same or distinct iterations. This requirement is met by 
constraining the schedule for a single iteration to be such 
that the same resource is never used more than once at the 
same time modulo the II. 

Lower bounds on II can be established through a simple 
analysis of the data dependence graph for the loop boay. 
One bound (ResMIIj is derived from the resource usaee 
requirements‘ of the graph while the other (RecMII)% 
derived from latency calculations around circuits defining 
recurrences within the data dependence graph for the loop 
body. The actual II must be greater than or equal to the 
maximum of these bounds. A more detailed discussion of 
ResMII and RecMII can be found in [9, 11,5, 181. Any legal 
II must be equal to or greater than MAX(ResMlI, RecMlI). 

Figure la displays the FORTRAN DO-loop which we 
shall use as an example, and the corresponding intermediate 
representation using virtual registers. Figure lb lists the 
operations within the body of the loop and the lefthand 
column of Figure lb lists names used to refer to individual 
operations. These names are used in Figure 2a to specify at 
what time and on which functional unit each operation is 
scheduled after modulo scheduling is completed with an II 
of3. 

The schedule for an iteration can be divided into stages 
consisting of II cvcles each. The number of stages in one 
iteration 7s termed the stage count (SC). Each &ge of the 
schedule in Figure 2a is demarcated by heavy lines. Figure 
2b shows the record of execution during the steady state of 
the modulo scheduled loop. The prefix before each 
operation’s name indicates the iteration (relative to the 
currently issued nth iteration) to which that operation 
belongs. Note that although a single iteration takes 15 
cycles to execute, (as shown in Figure 2a), each additional 
iteration takes only an incremental 3 cycles. This is the 
motivation for performing modulo scheduling. 

In a modulo schedule, exactly the same pattern of 
operations is executed in each stage of the steady state 
portion of the modulo schedule’s execution. This behavior 
can be achieved by looping on a piece of code that 
corresponds to one stage of the steady state portion of the 
record of execution. This code is termed the kernel. The 
record of execution leading up to the steady state is 
implemented with a piece of code called the prologue. A 
third piece of code, the epilogue, implements the record of 
execution following the steady state. Figure 3 shows the 
code for the loop kernel. Instruction i of the kernel includes 
all operations that are scheduled at time i modulo the II. 
Also, shown in Figure 3 is the stage of the schedule from 
which each operation comes. Operations in the kernel code 
which are from distinct stages are from distinct iterations of 
the original loop. The branch operation, Bl, determines 
whether or not another iteration is to be executed, and since 
its latency is 2 cycles, it must be scheduled in the second to 
last instruction of the kernel. 

Figure 4a uses this example DO-loop to demonstrate 
the abstracted representation of code that we shall use in this 
paper. Each square represents one stage’s worth of code from 
a single iteration. The letter label in the square indicates the 
corresponding stage, with A corresponding to stage 0, B to 
stage 1, and so on. Thus, the set of rectangles in the leftmost 
c&mn correspond to all the operations in the fist iteration. 
Each row of sauares renresents II VLIW instructions. The row 
of squares thit includks the last stage of the first iteration 
corresponds to the kernel code (Figure 4a). The triangle of 
squares above the kernel represents the prologue code and 
the triangle of squares below the kernel represents the 
epilogue code. 

1.3 Overlapped Lifetimes 
The code in Figure 3 is incorrect as shown. Consider the 

operation t03 = iadd(t03,#4) which at time 0 computes a 
new address value into virtual register t03 (Figure 4a). The 
lifetime of this value extends to time 12 when it is used for 
the last time. However, 3 cycles later the same operation is 
executed again on behalf of the next iteration and will 
overwrite the previous value in t03, while it is still live, 
yielding an incorrect result. One approach to fixing this 
problem is to provide some form of register renaming so that 
successive definitions of t03 actually use distinct registers. 
We shall define such a scheme in Section 2. It is important to 
note that conventional hardware renaming schemes are 
inadequate. Since, successive definitions of t03 are 
encountered before the uses of the prior definitions, it is 
impossible even to write correct code for the modulo 
scheduled loop with the conventional model of register 
storage. 

When no hardware support is available, modulo 
scheduling is made uossible bv modulo variable 
expansioi, (MVE), i.e.: unrolling the kernel and renaming 
at compile time the multiple (static) definitions that now 
exist of each virtual register [II]. The unrolling and 
renaming prevents successive lifetimes, corresponding to the 
same loop-variant physical register, from overlapping in 
time. The minimum degree of unroll, Kmin, is determined by 
the longest lifetime among all loop-variants i. Assume that 
each loop variant i has parameters starti and endi marking 
the beginning and end of the lifetime. Because iterations are 
initiated every II cycles, Kmin can be calculated as 

Kmin = M+X ( pdi;taTti)] ) 

In our example, the longest lifetime is 12 cycles 
corresponding to the definition of t03. For an II of 3, this 
requires that Kmin = 4. Every fourth definition of t03 can 
reuse the same physical register since its previous contents 
are no longer live. The structure of the code after kernel 
unrolling is shown in Figure 4b. ‘Ihe labels for the squares 
now include a numerical suffix which specifies which code 
version is being used. By looking at the columns one can see 
that there are Kmin distinct versions of code for an iteration 
and that the successive iterations cycle through these four 
versions. Each version makes use of different sets of physical 
registers to avoid over-writing live values. 

It may appear that modulo scheduled code can be 
generated in conformance with the code schemas of Figures 
4a or 4b. We shall see in Section 3 that this is not the case 
and that, in fact, considerably more complex schemas are 
needed if performance is not to be compromised. The 
problem is that with the code schemas of Figures 4a and 4b, 
it is only possible to execute i+4 and 4*i+4 iterations 
respectively, where i 2 0. (Four iterations can be executed by 
branching from the last stage of the prologue to the fist 
stage of the epilogue. Fewer iterations cannot be executed 
with the codes schemas in their current form.) These code 
schemas have to be augmented if an arbitrary number of 
iterations are to be executable. 

1.4 Pre-conditioning of Modulo Scheduled DO-Loops 
A solution, that is often employed, is to pre-condition 

the modulo scheduled loop so that only the appropriate 
number of iterations remain to be executed at the time the 
prologue is entered. In general, the code schemas of Figures 
4a and 4b can execute only certain numbers of iterations, N, 
where N = K*i + (SC-l) and where K is the degree of unroll, 
SC is the number of stages in one iteration and i 2 0. When 
the desired number of iterations, L, is not of this form, a 
conventional, non-software pipelined version of the loop is 
fist executed until the number of remaining iterations is of 
the above form. At this point, the modulo scheduled code 
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schema is entered with an appropriate trip count. The 
number of iterations, M, in the pre-conditioning loop is 
given by 

( 

I-, ifL<SC- 1 

M = [L - (SC-l)] mod K, otherwise. 

N= L-M 

These M iterations are executed relatively slowly and the 
remaining N iterations are executed with the full, modulo 
scheduled level of performance. Assume that the time taken 
to execute one iteration of the non-software pipelined, pre- 
conditioning loop is SLGC*II cycles. Then 

Tpc = M*SL + (N + SC - l)*II 

TI,jd = (L + SC - l)*II 

where Tpc is the execution time for the pre-conditioned 
loop and TIdeal is the ideal execution time for the software 
pipelined loop. The first term in the formula for TPC is the 
time spent in the pre-conditioning loop and the second term 
is the time spent in the software pipelined loop. The 
speedups in the two cases, relative to a non-software 
pipelined version of the loop are given by 

spc = L*sL 
M*SL + (N + SC - l)*II 

SIdcal = L*sL 
(L + SC - l)*II 

The effectiveness of pre-conditioned code is highly 
dependent upon the nature of the processor architecture. In 
order to better illustrate this point, we define four 
processors: Pl, P2, P3, P4 (Table 2). Processor P3 is exactly 
the sample processor of Table 1. Processors Pl and P2 are 
versions of the sample processor having identical latency 
but reduced numbers of functional units, while processor P4 
is P3 with increased latencies. 

A schedule was generated for the example program of 
Figure 1 for each of the processors in order to help illustrate 
the relationship between the amount of processor parallelism 
and the four parameters which determine pre-conditioned 
code performance. The four parameters are: the initiation 
interval (II), the number of stages (SC), the minimum degree 
of kernel unroll (Kmia) and the schedule length of a single 
non-overlapped loop iteration (SL). Note that K 1 Krain. In 
this discussion we assume that K = Khn. Parameters resulting 
from schedules for the four processors are shown in Table 3. 

In all four schedules, II was equal to ResMII because 
each schedule saturates a resource. For the schedule for 
processor Pl, fifteen total operations were scheduled onto a 

single functional unit. For P2, six memory operations were 
scheduled onto a single memory unit. For both P3 and P4, 
six memory operations were scheduled onto two memory 
units. Thus, the ResMII and a resulting II can be justified and 
as we increase the number of functional units within the 
processor (Pl, P2, P3), the II decreases. 

SC represents the length of the software pipeline 
schedule of a single iteration divided by the II and rounded 
up to the nearest integer. If we were to assume that the 
schedule length for a single iteration were held constant, 
than the effect of reducing II is to increase the number of 
stages. We can see that this increase in SC indeed occurs as 
one goes from processor Pl to P2 to P3. As II decreases 
through the values 15, 6 and 3, SC increases through the 
values 2, 3 and 5, respectively. The parameter Kmin can be 
viewed similarly. If we were to assume that the longest 
lifetime is constant among the different schedules and is 
then divided by II to yield Kmia we will see a similar 
progression of decreasing II and increasing Kmia. SC and 
Kmtn are not strictly inversely proportional to II. As we add 
functional units, the schedule length and the lifetime 
lengths do not stay absolutely constant. Processor P4 
demonstrates the effects of increasing the latency which is to 
generally increase schedule lengths and, correspondingly, to 
increase SC, Kmial and SL. 

The effects of varying these parameters on the speedups, 
TPc and TIdeat, achieved by the pre-conditioned loop and the 
ideal case, respectively, are shown in Figure 5. Note that for 
a machine with little parallelism such as Pl (Figure 5a), pre- 
conditioning is quite satisfactory because the time lost in 
non-overlapped pre-conditioning code is small. One reason 
for this is the small Kmia which results in a small value for M. 
Secondly, the small difference between SL and II decreases 
the benefits of software pipelined execution over non- 
overlapped execution. 

Although pre-conditioning is an acceptable solution 
for processors with little instruction-level parallelism, in 
processors with as much parallelism as P3 or P4 (Figures 5c 
and 5d), the loss in performance due to preconditioning is 
very significant. In particular, only very large trip counts 
can guarantee that the loop achieves close to asymptotic 
performance. For P3 and P4, the maximum value of M is 
large and so is the difference between SL and II. 
Furthermore, pre-conditioning is not an option with 
WHILE-loops. Better alternatives are needed with VLIW 
processors and aggressively superscalar processors or if 
general-purpose computation involving WHILE-loops is to 
be supported. These are the subject of Section 3. 

Table 2. Definition of Processors Pl, P2, P3, P4 

Pl A single functional unit which executes all operations. Latencies are as in Table 1. 

P2 Three functional units. An IALU unit executes all integer operations and branches. The memory unit performs loads and stores. 
The floating point unit executes all floating point operations. Latencies are as in Table 1. 

P3 The sample processor of Table 1. 

P4 The sample processor with all latencies doubled. 

Table 3. Results of Scheduling Sample Processors 

Machine II SC ‘kin SL 
Pl 15 2 2 20 
P2 6 3 3 16 
P3 (sample processor) 3 5 4 15 
P4 3 9 9 2s _ 
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1.5 Modulo Scheduling of WHILE-Loops 
In DO-loops, it is possible to decrement and test the 

count of the remaining iterations in time to either start the 
next iteration with an initiation interval of II or exit the 
kernel. This is not always the case in the broader class of 
loops which we shall refer to in this paper as “WHILE- 
loops”. This is the class of single entry loops with a single 
control flow back-edge, one or more exits and for which it is 
not known, at the time that the loop is entered, what the trip 
count will be. Whether another iteration is to be executed is 
known somewhere in the middle of the current iteration and 
the extent of software pipelining is apparently limited by 
the fact that the next iteration cannot be initiated until this 
point in time. 

Consider the situation if in Figure 4a it is not known 
until stage C whether another iteration is to be executed. The 
earliest time that the next iteration could be initiated would 
be at the end of stage C. The resulting modulo schedule 
would have an II that is three times as large (Figure 6a). The 
limiting dependence is the control dependence between a 
loop-exiting branch operation in one iteration and all of the 
operations in the next iteration. Assuming hardware support 
for speculative code motion [13], this control dependence 
can be relaxed to yield a smaller II and a better modulo 
schedule [ 221. 

In Figure 6b, the operations in stages A and B of a given 
iteration, instead of being control dependent on the branch 
operation from stage C of the previous iteration, have been 
made dependent on the corresponding branch operations 
from three and two iterations ago, respectively, i.e., they are 
executed speculatively. This is clear in-Figure -6b since stages 
A and B are executed before or in oarallel with stage C of the 
previous iteration. The remaining-stages are scheduled non- 
speculatively after stage C of the previous iteration. The net 
result is a schedule that yields the same performance as 
would be obtained for a DO-loop. 

The speculative execution of stages A and B implies 
that at every instant, after the second stage of the fist 
iteration, we have two iterations that have been initiated 
speculatively. When the kernel is exited, we can stop 
executing, and leave unfinished, the two speculative 
iterations that are in progress at that point. In Figure 6b, this 
aborted computation- is-the rightmost two columns of the 
eoiloaue which are shown shaded. The code for this is 
eiin&ated from the epilogue. In general, if 9 stages of each 
iteration are executed speculatively, the rightmost 8 
columns of the epilogue are eliminated and the epilogue 
length reduces by 8 stages. 

2 Architectural Support for Modulo Scheduling 

In this section, we shall describe architectural features 
that support the use of fast, compact code for modulo 
scheduled DO-loops and WHILE-loops. The motivation for 
their existence as- well as the manner in which they are 
intended to be used is deferred to Section 3. 

2.1 Rotating Register Files 
A rotating register file is addressed by adding the 

instruction’s register specification field to the contents of 
the Iteration Control Pointer (ICP) modulo the number of 
registers in the rotating register file. Special loop control 
operations, that are described below, decrement the ICP each 
time a new stage starts. As a result of decrementing the ICP, a 
new absolute register now corresponds to the register 
specifier i, and the register that was -previously specified as 
register i would have to be soecified as register i+l. This 
alibws the lifetime of a value generated in-one iteration to 
overlap the lifetimes of corresponding values generated in 
previous and subsequent iterations without code replication. 

The rotating register file is quite similar in concept to 
vector registers. Instead of moving the pointer every cycle, it 
is moved once per kernel iteration, and instead of having 

multiple vector registers, they are pooled into one register 
file. The use and allocation of rotatine resisters is described 
in [17]. One version of rotating regist&s f&t appeared in the 
scratchpad register files of the FPS AP-120B and FPS-164 
]41. 

2.2 Predicated Execution 
The Iteration Control Register (ICR) is a rotating 

resister file that stores boolean values called medicates. An 
operation is conditionally executed based on’ the value of 
the predicate associated with it. For example, the operation 
“a = op(b,c) if p” executes if the predicate in the ICR register 
p is true (one), and is nullified if the predicate is false (zero). 
Predicated execution permits the generation of more 
compact code by conditionally disabling the execution of 
operations during prologue and epilogue execution. The 
need to unroll a prologue and epilogue is eliminated, 
thereby supporting the generation of kernel-only code as 
described in Section 3.5. 

In addition to supporting the combining of prologue, 
kernel. and eoilonue code. medicates are also used to enable 
moduio schkdujing of. -loops containing conditional 
branches [S, 191. Predicates permit the IF-conversion of the 
loop body [2], thereby eliminating all branches from the 
loop body. The resulting branch-free loop body is modulo 
scheduled. This was the primary motivation for providing 
medicated execution in the Cydra 5. More recently, limited 
forms of predicated execution have been incorporated or 
proposed in other machines [6, 11. In the absence of 
predicated execution, other techniques must be used 
requiring either multiple versions of code corresponding to 
the various combinations of branch conditions [6, 15, 211 or 
restrictions on the extent of overlap between successive 
iterations [ 111. Predicated execution is conceptually similar 
to, but more general than, the use of mode bits in the vector 
mask register of a vector processor. 

2.3 Speculative Execution 
Speculative execution consists of executing an 

operation before it is clear that it should, in fact, be 
executed. One way of achieving speculative execution is by 
speculative code motion, i.e., by moving an operation up 
above the branch that could have directed flow of control 
away from this operation [7]. The main challenge is to report 
exceptions correctly in the face of speculative execution, 
i.e., if and only if the exception would have been reported in 
the non-speculative execution of the program. The hardware 
support assumed involves having two versions of every 
operation that can be speculatively executed (one normal 
opcode and one speculative opcode), and an additional bit 
in every register to serve as a tag indicating that the register 
contains an exception tag rather than normal data. A 
detailed description of this hardware support and its use is 
described elsewhere [ 131. 

2.4 Loop Control Operations 
In this paper we use three loop control operations for 

modulo scheduling DO-loops: brtop, bquit and rotate. 
These operations are merely described below; their use is 
motivated in Section 3.5. The description of the brtop 
operation provided here follows that by Dehnert, et al. [5]. 
A flowchart for the brtop is provided in Figure 7a. The brtop 
operation is scheduled in the second last cycle of a stage 
within the loop body so as to complete execution in the last 
cycle. The ICP is decremented every loop iteration so that 
each iteration can reference a different set of registers. The 
loop counter (LC) which counts the remaining loop 
iterations is decremented until it reaches zero. Thereafter, the 
epilogue stage counter (ESC) which counts epilogue stages 
is decremented until it reaches zero. At this point, the brtop 
branch is not taken and the loop is exited. The ESC supports 
the execution of the extra iterations of the kernel required to 
drain the software pipeline. The brtop operation assigns a 
boolean value to the predicate register ICR(ICP) which 
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controls the conditional execution of the next loop 
iteration. As the LC is decremented, the assignment to 
ICR(ICP) sets to true the controlling predicate for the next 
loop iteration. After LC has reached zero, the assignment to 
predicate ICR(ICP) sets to false the controlling predicate for 
subsequent loop iterations, thereby discontinuing the 
initiation of new iterations. The brtop operation finds LC=O 
after the last iteration has been initiated, and finds ESC = 
LC = 0 when it is time to exit the kernel. The initial value of 
ESC determines how many additional times the kernel 
should be executed after LC has become 0. 

The bquit operation (Figure 7b) is similar to the brtop 
operation except that it takes the branch if LC _5 0. The brtop 
operation is used when a code generation schema continues 
execution of a loop by branching (back to the top of the 
kernel). The bquit operation is used when a code generation 
schema continues execution of a loop by falling through to 
the next stage of the prologue. The third loop control 
operation, rotate, unconditionally decrements the ICP and 
sets the predictae pointed at by the ICP to 1. The rotate does 
not affect the flow of control. 

Two other loop control operations, wtop, wquit are 
needed in addition to the rotate operation for module 
scheduling WHILE-loops. The wtop opera’tion is defined in 
Figure Sa. In the case of WHILE-loops, the number of 
iterations (and the loop counter) are not known at the time 
the loop is entered. Instead of the loop counter, the wtop 
operation uses two inputs, a boolean and a predicate, and 
produces an output predicate. The output is true only if 
both the input boolean and the input predicate are true. 
This ensures that an iteration completes only if the previous 
iteration completed and the condition for the WHILE-loop 
was evaluated to false. The epilogue counter is used just as 
in brtop to allow the last few iterations to complete before 
the branch out of the loop is taken. The ICP is decremented 
as in brtop so that each iteration references a different set of 
registers. The wquit operation (Figure 8b) is similar to the 
wtop operation but has been altered much like the bquit 
operation. Whereas the wtop operation continues loop 
execution by branching back to the top of the kernel, the 
wquit operation continues loop execution within the 
prologue by falling through to the next stage. 

In the discussion of code schemas, we shall be 
considering situations when neither predicated execution 
nor rotating registers are present. When this is the case, the 
above five loop control operations degenerate to relatively 
conventional branch operations. All the necessary loop 
control operations and their semantics are listed in Table 4. 

3 Code Generation Schemas for Modulo Scheduled Loops 

When generating code for modulo schedules, two 
fundamental problems must be overcome. First, a means 
must be identified to prevent lifetimes, corresponding to 
successive definitions of the same loop-variant virtual 
register in successive iterations, from being assigned to the 
same physical register. One way to accomplish this is to use 
different versions of the code for successive iterations, with 
each version making use of different registers as a result of 
modulo variable expansion. The alternative is to use a single 
version of the code and to provide a rotating register file 
that dynamically renames the instruction-specified sources 
and targets, thereby achieving the same objective. Second, a 
means must be identified to allow subsets of the steady state 
software pipeline, the kernel, to be executed. This is required 
in order to handle the first few and last few iterations of the 
module scheduled loop and to handle the case of a smaller 
number of loop iterations than that corresponding to a 
single pass through the prologue, kernel and epilogue. It is 
possible to generate code for modulo scheduled loops for 
each assumption regarding the choice of code generation 
technique and available hardware support. All four code 
schemas, depending on whether rotating registers, predicated 
execution, neither or both are present, have been studied 
[18],. In this paper we shall restrict our discussion to two of 
the four sets of code schemas. In code schema 1, only 
speculative code motion is supported. In code schema 4, that 
plus predicated execution and rotating register files are 
provided. 

All of the code schemas described below have two 
things in common. First, it is assumed that there is a branch 
preceding the code schema that checks that the trip count of 
a DO-loop is at least one; if not, the entire code schema is 
branched around. Second, whenever a code schema has more 
than one control flow path out of it and into the code that 
follows the module scheduled loop, it is to be understood 
that there exists code on each of these paths which copies the 
scalar live-out values (if any) into the registers in which the 
subsequent code expects to find them. 

Code generation schemas for modulo scheduled 
WHILE-loops are similar to those for DO-loops. 
Nevertheless, there are differences that result from the fact 
that the trip count cannot be predetermined prior to loop 
entry. Here, we shall consider only the schemas for code 
generation, not the details of how to modulo schedule 
WHILE-loops, which is discussed elsewhere [22]. The 
WHILE-loops referred to in this section correspond to the 
do-while construct of the C language with an arbitrary 
number of exits from the loop. One important distinction 
from DO-loops is that pre-conditioning is not an option 
with WHILE-loops. 

Table 4. Definitions of Loop Control Operations 

Name of operation I operation semantics I 
brtop defined in Fig. 8a 
wtop defined in Fig. 9a 

bquit defined in Fig. 8b 

wquit defined in Fig. 9b 
“oop do nothing 
rotate ICP = ICP-1; ICR(ICP)=l; 

bet 

bctb 

bc 

bcb 

If(LD0) (LC=LC-1; take branch ) 
If(L00) (LGLC-1; )else take branch 

If(not exit condition) take branch 

If(exit condition) take branch 

162 



Schema 1 1s 

Table 5. Application of Loop Control Operations 

Placement of Operation Within 
DO-Loops 

Within 
WHILE-loops 

Schema 4c Kernel stage I brtop I wtop I 

We shall avoid detailed discussions of the WHILE-loop 
schemas since in all cases they closely parallel those for DO- 
100~s. but with the following differences. 

brtop and bquit operati&s are consistently replaced by 
wtop and wquit operations, respectively. The loop 
counter is irrelevant. 
The fist 0 stages of the prologue do not contain an exit 
branch because the first exit condition is not evaluated 
until stage 0 +1 of the first iteration. Accordingly, the 
first 0 branch arcs out of the prologue, which are shown 
as dashed lines, are understood to be absent. 
When rotating registers or predicates are present, these 
first 0 stages contain rotate operations in place of the 
wquit branches so that the requisite loop control 
functions are still performed. 
The rightmost 0 columns of every epilogue (which are 
shown shaded in the figures) are deleted since these 
correspond to the unnecessary completion of 
speculatively initiated iterations. As a result, the length 
of each complete epilogue decreases by 8 stages. 

Table 5 is used to determine which specific loop control 
operation is to be used in each stage of the various code 
schema that are discussed in the rest of this section. 

3.1 Code Schema 1: Only Speculative Support 
We fist consider, for the DO-loop example of Figure 1, 

a code generation schema (Figure 9a) which requires no 
special hardware. Recall that for this example, SC = 5 and 
Kmia = 4. As before, each square is labeled with a letter 
identifying the stage and a number identifying the code 
version (register assignment choice) used. All stages of a 
single iteration (same column) correspond to the same code 
version. A single stage of the modulo scheduled code (all the 
squares in a single row) consists of one stage each (and a 
different one) from successive iterations. A loop-control 
branch is executed at the end of every stage of the modulo 
scheduled code as specified by Table 5. Arrows indicate 
taken branches which, typically, signify transfer of control 
to an epilogue which completes unfinished portions of the 
iterations that were in execution when the exit branch was 
taken. 

We can divide the code generated with this schema into 
a prologue, a kernel, multiple partial epilogues and 
multiple complete epilogues. Since rotating registers are 
absent, the code schema must include all the code shown in 
Figure 4b plus additional code to permit an arbitrary 
number of iterations. The unique prologue is depicted by 
the topmost triangle of rows with left hand column Al . . . Dl. 
The kernel is the full width parallelogram consisting of Kmia 
= 4 rows with left hand squares labeled El, E2, E3, E4. 
Register lifetime overlap requirements necessitate the kernel 
be unrolled to yield four copies. The last stage of the kernel 

contains the bet operation which, when taken, closes the 
loop or, when not taken, enters the complete epilogue 
depicted by the triangle with righthand column B4 . . . D4. 
The rest of the stages in the prologue and kernel contain 
bctb operations which, when taken, lead to various versions 
of complete or partial epilogues. Complete epilogues are 
reached by exiting the loop at the end of any of the four 
kernel stages, or by exiting from the the final prologue 
stage. Partial epilogues are reached by exiting from any of 
the earlier (fist three) prologue stages. The LC must be set 
initially to one less than the desired trip count. 

The code schema of Figure 9a can be seen to be 
redundant. The epilogues reached by branching out of the 
final prologue stage and by falling out of the final kernel 
stage are identical and can be merged into a single epilogue. 
Each of the partial epilogues reached by branching out of 
one of the earlier stages of the prologue has a final portion 
which is identical to the final portion of one of the complete 
epilogues. This final portion of the partial epilogues can be 
eliminated and replaced by an unconditional branch to the 
appropriate stage of the appropriate complete epilogue. The 
resulting code schema, with this redundancy eliminated, is 
shown in Figure 9b. 

Figure 9 also shows the code generation schema for a 
WHILE-loop in the absence of hardware support. (The 
shaded squares and the dashed lines should be viewed as 
absent for the WHILE-loop schema.) This example loop has 
SC = 5, Kmia = 4, 8 = 2 and, therefore, the number of 
epilogue stages, ES = SC-@-l = 2. All of the standard 
differences listed above, between DO-loop schemas and 
WHILE-loop schemas, apply. Other aspects of this schema 
are the same as that for DO-loops. As with DO-loops, normal 
conditional branches are employed and the ESC is 
unnecessary. 

3.2 Code Schema 1s: Aggressive Speculation 
Aggressive speculative code motion can be used to 

minimize the length of the epilogue in both DO-loops and 
WHILE-loops. In particular, if the loop exit branch can be 
scheduled in the last stage of an iteration, then 8 would be 
equal to SC-l and the length of the epilogue would be zero. 
Since t3 rows and 8 columns of every partial or complete 
epilogue are deleted from schema 1, all of the epilogues 
would disappear. 9 = SC-1 corresponds to all but the 
operations in the last stage being executed speculatively. We 
shall refer to this as code schema 1s. In certain cases, there 
may be too many operations (such as stores) to fit in the last 
stage without compromising the II. In such cases, 8 would 
have to be less than SC-l and some of the epilogues would 
be present albeit with reduced length. 
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3.3 Code Schema lpc: Pre-conditioned Code (for DO- 
Loops only) 
In the absence of predicates or rotating registers, the 

multiple epilogues of code schema 1 can be eliminated, 
yielding the code schemas in Figure 4b, by pre- 
conditioning the loop. Recall from Section 1.4 that the 
number of iterations, M, in the pre-conditioning loop is 
given by 

1 

L, ifL<SC- 1 

M = [L - (SC-l)] mod K, otherwise. 

N= L-M 

where L is the desired number of iterations, K is the degree 
of unroll and SC is the number of stages in one iteration. The 
remaining N iterations are executed in the modulo 
scheduled code schema. The LC must be initialized prior to 
entering the modulo scheduled loop with the value [N-(SC- 
l)] div K. The branch operation at the end of the kernel must 
decrement the loop counter by 1 each time it is executed 
(which is every K*II cycles). No other branch operations are 
needed in either the prologue or the kernel. Alternatively, 
the LC may be initialized to [N-(SC-l)] and the branch at 
the bottom of the kernel must decrement the LC by K each 
time. (Of course, both alternatives are identical when K = 1.) 
The pre-conditioned version of code schema 1 will be 
referred to as code schema lpc . 

3.4 Code Schema 4: Speculative Support, Rotating 
Registers and Predicated Execution 
The code schema of Figure 10a makes use of both 

predicates and rotating registers. Starting with code schema 
1 (Figure 9b), we see that each partial epilogue is a subset of 
the complete epilogue below it. So, rather than executing 
the partial epilogue one could, instead, execute the 
complete epilogue with the appropriate number of the 
leftmost columns disabled bv oredicates. This eliminates the 
partial epilogues. Next, be&&se of the rotating registers, 
multiple versions of code are unnecessary. All the epilogues 
can be merged with the one below the kernel, and the kernel 
unrolling can be eliminated. The result is the code schema 
shown in Figure 10a. All the bquit operations have as their 
target the beginning of the (single) epilogue. With this code 
schema, too, the LC must initially be set to one less than the 
desired trip count and the ESC must be initialized to 0. 

As before, there are rotate operations instead of branches 
in the first 0 stages of a WHILE-loop schema. Subsequently, 
there is a wquit operation in every stage of the prologue and 
a wtop operation in the kernel. ESC must be initialized to 0. 

3.5 Code Schema 4c: Kernel-Only Code 
With hardware support in the form of rotating registers 

and predicated execution, it is not necessary to have explicit 
code even for the prologue and epilogue; a single copy of 
the kernel is sufficient to execute the entire modulo 
scheduled loop. This is termed kernel-only code. Consider 
the kernel-onlv code schema deoicted in Figure lob. Everv 
stage of the code schema in Figure 10a is ‘a subset of th& 
kernel-only schema. The prologue and epilogue can be 
swept out by executing the kernel with the appropriate 
operations disabled by predicated execution. Since this is a 
compact version of code schema 4, we shall refer to the 
schema in Figure lob as code schema 4c. 

The code corresponding to the kernel-only schema is 
shown in Figure lla. All operations from the i-th stage are 
logically grouped by attaching them to the same predicate, 
swcificallv, the contents of the ICR register snecified bv the 
predicate &ecifier i (relative to the I&). Thisis represented 
in Figure lla by appending “if pi” to every operation from 
the i-th stage. This permits all operations from a particular 
stage (of one iteration) to be disabled or enabled 

independently of the operations from some other stage (of 
some other iteration). At every point in time, predicate p. is 

the ICR register that is currently pointed to by the ICP. This 
predicate is set to 1 by the brtop operation during the ramp 
up and steady state phases (i.e., while the value of the loop 
counter is greater than 0) and is set to 0 during the epilogue 
ohase. Because brtoo decrements the ICP. a different 
physical predicate regi&r is written into every II cycles and, 
a given predicate value must be referred to by different 
predicate specifiers in different stages. 

Figure llb demonstrates the manner in which this is 
actually effected with the joint use of rotating registers, 
predicated execution and the brtop operation. The example 
assumes that 7 iterations of a loop of 5 stages is desired. The 
loop counter, LC, is initialized to 6--one less than the 
number of iterations desired. The epilogue stage counter, 
ESC, is initialized to 4--one less than the number of stages. 
Lastly, p. (the ICR location that is currently pointed to by 
the ICP) is set to 1 and p1 through p4 are set to 0. At this 
point, the kernel-only code is entered. Since only p. is true, 

only the operations from the fist stage, labelled A, are 
executed and the rest of the operations are disabled. At the 
end of the fist trip through the kernel, since the LC is 
greater than 0, the brtop operation loops back to the top of 
the kernel and decrements the LC by 1. It also decrements 
the ICP by 1 and, since the ICR is a rotating register file, the 
true predicate that used to be p. is now pl. Also, because the 
LC was greater than 0, the new p,, is set to 1. During the next 
trip through the kernel code, the operations corresponding 
to the first two stages, A and B, execute since both pa and p1 
are true. 

This process is repeated with the operations in the i-th 
stage being executed when the corresponding predicate, pi, 

is 1. Eventually, the brtop operation finds that the LC is 0, 
but loops back because the ESC is greater than 0. However, 
it now decrements the ESC, decrements the ICP and inserts a 
0 in the new p0. As a result, the next time around, operations 
from stage A are not executed. Finally, when both the LC 
and ESC are 0, the brtop operation falls through to the code 
following the loop. In the process, seven iterations each 
consisting of five stages have been swept out by the 
combined operation of the brtop operation, rotating 
registers and predicated execution. 

As with DO-loops, it is possible to generate kernel-only 
code for WHILE-loops, but only for the portion after the 
fist 0 stages. The first 0 stages of the WHILE-loop when the 
boolean expression for the fist iteration is being computed 
constitutes the minimal length prologue permissible. The 
kernel can then generate all the remaining stages of the loop 
iterations. The ESC must be initialized to SC-&l. 

Predicated execution and the loop-control branches are 
used in much the same way in code schema 4 as they are in 
schema 4c, even though an explicit prologue and epilogue 
are provided. When executing the prologue or when the 
epilogue is executed due to the brtop operation falling 
through, the predicates are redundant since only those stages 
are present for whom the predicate is true. However, the 
predicates are required, when the epilogue is entered via a 
bquit operation, so as to disable those stages that are not part 
of the partial epilogue that needs to be executed. - 

Two mimarv benefits result from the fact that schema 4 
provides explicit prologues and epilogues unlike its kernel- 
only counterpart. First, the schedules of the prologue and 
epilogues can be customized and optimized to take 
advantage of the reduced requirements for resources within 
the loop startup and loop shutdown phases. Second, code 
which originates from outside the innermost loop may be 
percolated into and scheduled in parallel with prologue and 
epilogue code. This can result in better performance than 
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with kernel-only code, an effect that is more noticeable 
when the trip count of the innermost loop is small. 

3.6 Bounds on Prologue and Epilogue Lengths 
In general, the code schemas described above consist of 

a prologue, a steady state kernel, and an epilogue (or 
multiple epilogues). The number of stages of prologue (PS) 
and epilogue (ES) used in a code schema were assumed to 
always be SC-1 and SC-g-1 stages, respectively (with 8 set to 
0 for DO-loops). For kernel-only code, these numbers are tl 
and 0, respectively. Whereas, the latter numbers do represent 
the minimum possible prologue and epilogue lengths, the 
former number do not quite correspond to the maximum 
lengths. If the sole objective of the prologue and epilogues 
is to eliminate the unneeded kernel computation during the 
ramp up and ramp down of the software pipeline, then SC-1 
and SC-B-1 do, in fact, represent the maximum prologue and 
epilogue length required. The prologue and epilogue 
lengths are, however, also dictated by the register allocation 
strategy [17]. 

4 Conclusions 

Pre-conditioning a modulo scheduled loop, though 
acceptable on processors with little instruction-level 
parallelism, leads to significant performance degradation on 
processors which either are capable of issuing many 
operations per cycle or are deeply pipelined. In such cases, 
other code schemas must be employed. The generation of a 
high performance and correct modulo scheduled code 
schema is affected by a number of issues: whether or not the 
loop is a DO-loop, the nature of the hardware support 
provided, whether or not the loop has live-in or live-out 
scalar variables, and the nature of the register allocation 
strategy employed. In this paper we have detailed the code 
generation schemas, both for DO-loops and WHILE-loops, 
for certain combinations of assumptions regarding hardware 
support. Two of these schemas (1 and 4) do not compromise 
performance. Three other schemas (lpc, Is and 4c) trade 
varying amounts of performance for more compact code. 

Hardware support for speculative code motion is 
valuable with all of the modulo scheduled WHILE-loop 
schemas and for Schema 1s in the case of DO-loops as well. 
Predicated execution and rotating register files are needed 
for Schemas 4 and 4c with both types of loops. Predicated 
execution is also valuable when modulo scheduling either 
type of loop if control flow is present in the loop body. 
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IX3 10 I = 1.N 
Q = U(1) * Y(1) I I p1 t01 = iadd(t01,#4) 

Y(1) = X(1) + Q 

X(1) = Q - V(1) * X(1) 

Rl t02 = load(t01) 
P2 t03 = iaddCt03.#41 
R2 t04 = loadit03j 
Ml t05 = fmul(t02,t04) 
P3 tO6 = iadd(t06,#4) 
R3 t07 = load(t06) 
Al t08 = fadd(t07,t05) 
Wl storIt03.tO8) 
P4 t09 = iadd(t09,#4)' 
R4 t10 = loadlt091 
m tll = fmulitlO;t07) 
Sl t12 = fsub(tO5,tll) 
w2 stor(tOd,tl2) 

10 CONTINUE Bl brtop 

(a) I I (b) 

Figure 1: (a) A sample FORTRAN DO-loop. (b) The intermediate representation of the body of the loop. 

(4 

TiIM IALU 1 IALU 2 
Module 3 Mp”o”IY 

yyz;Y Multiplier Adder Instruction 
Unlt 

0 rl:Pl n:p2 n-4:Wl n-l:R4 n-2:Ml n-4:Sl 
1 ll:P3 n:Rl n:R2 n-3:Al n:Bl 
2 ll:P4 n:R3 n-4:W2 n-2:M2 

@) 

Figure 2: (a) Modulo schedule for the example of Figure 1. (b) Record of execution for a single stage during the steady state 
(assuming register renaming). The label before the colon indicates the iteration to which the operation belongs. Iteration n has 

just begun. 

Instruction Stage Module Scheduled Kernel Code 
0 0 t01 = iadd(t01,#4), tO3 = iadd(t03,#4), 

1 t10 1 = oad(tO9). 
2 t05 = fmul(t02,t04), 
4 stor(t03,t08), t12 = fsub(t05,tll); 

1 0 tO6 = iadd(t06,#4), t02 = load(t01). t04 = load(t brtop, 

Figure 3: Kernel code after modulo scheduling. (Operations in a single instruction are separated by stage for illustrative 
purposes only. There is no such distinction in the code.) 
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Figure 4: (a) The code schema for the modulo scheduled loop. (b) Kernel-unrolled loop structure. 
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Figure 5: Speedup as a function of trip count for a pre-conditioned loop vs. the best achievable code schema. (a) For II = 15, SC 
= 2, K tin = 2, and SL = 20. (b) For II = 6, SC = 3, Kmin = 3, and SL = 16. (c) For II = 3, SC = 5, Kdn = 4, and SL = 15. (d) For II 

=3,SC=9,Ktii,=9,andSL=25. 
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Figure 6: A modulo scheduled WHILE-loop (a) without and (b) with speculative execution 

E@bgre 

(4 

Figure 7: (a) The brtop operation. (b) The bquit operation 
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False SC>0 A;“, 
False 
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ICP = ICP-1 ICP = ICP-1 

Figure 8: (a) The wtop operation. 
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Figure 9: (a) Code schema 1 (without predicated execution or rotating register 
files). (b) Code schema 1 after removal of redundant code. 

(4 

0) 

Figure 10: (a) Code schema 4 (with 
predicated execution and rotating register 

files). (b) Kernel-only code schema. 

Instruction Stage Modulo Scheduled Loop Code 

0 0 r21 = iadd(r22.X 4) if p0, 1-00 = iadd(rOl,#l) if p0, 

1 1-04 = load(rl5) If pl, 
3 r22 = fmullr2l.rl9) If 02. 

1 

2 

. ~~~ ~,~~~.~ .-. 
4 stor(r04,r17) If p4, x-14 = fsub(r24,r14) if p4 

0 r08 = iadd(r09,#4) if p0, r19 = load(r21) if p0, r17 = load(r00) if p0, brtop, 
3 r16 = fadd(r08,r23) If p3 

0 r14 = iadd(rl5,#4) if p0, r05 = load(r08) If PO, 
2 r12 5 fmul(r05,r07) If p2 

4 stor(rl2,rl4) if p4 

(4 

(b) 

Figure 11: (a) Kernel code for the kernel-only code schema. (b) Operation of the brtop instruction while executing kernel-only 
code for 7 iterations of a loop with 5 stages 
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