
Code Generation Schema for Modulo Scheduled Loops
B. Ramakrishna Rau, Michael S. Schlansker, P. P. Tirumalai

Hewlett Packard Laboratories, Palo Alto, California

Abstract
Software pipelining is an important instruction

scheduling technique for efficiently overlapping successive
iterations of loops and executing them in parallel. Modulo
scheduling is one approach for generating such schedules.
This naner addresses an issue which has received little
attentibn’ thus far, but which is non-trivial in its complexity:
the task of generating correct, high-performance code once
the modulo schedule has been generated, taking into
account the nature of the loop and the register allocation
strategy that will be used. This issue is studied both with and
without hardware features that are specifically aimed at
supporting modulo scheduling.

Keywords: code generation, modulo scheduling,
software pipelining, VLlW processors, superscalar processors

1 Introduction

1.1 Software pipelining
Software pipelining is a loop scheduling technique

which yields highly optimized loop schedules. Algorithms
for achieving software pipelining fall into two broad classes:
l modulo scheduling, in which all iterations of the loop

have a common schedule [161 and,
l algorithms in which the loop is continuously unrolled

and scheduled until a situation is reached allowing the
schedule to wrap back on itself without draining the
pipelines [151.

Although, to the best of our knowledge, there have been no
published measurements on this issue, it is the authors’ belief
that the second class of software pipelining algorithms can
cause unacceptably large code size expansion.
Consequently, our interest is in modulo scheduling. In
general, this is an NP-complete problem and subsequent
work has focused on various heuristic strategies for
performing modulo scheduling, e.g., [24, 9, 11, 10, 121 and
the as yet unpublished heuristics in the Cydra 5 compiler
[5]. Modulo scheduling of loops with early exits is described
by Tirumalai, et al. [22]. Modulo scheduling is applicable to
RISC, CISC, superscalar, superpipelined, and VLIW
processors, and is useful whenever a processor
implementation has instruction-level parallelism either by
virtue of having pipelined operations or by allowing
multiple operations to be issued per cycle.

This paper describes code generation alternatives for
modulo scheduled loops, both on processors such as the
Cydra 5 [19] which have hardware support for modulo
scheduling as well as on other instruction-level parallel
processors which do not. The focus of the paper is on
precisely specifying the alternatives and far less on
evaluating their relative merit. Hardware support for
modulo scheduling includes rotating register files (register
files which support compiler-managed register renaming,
also known as the MultiConnect in the Cydra 5), predicated
execution and the Iteration Control Register (ICR) file (a
boolean register file that holds the predicates), certain loop
control opcodes [5, 19, 221 and support for speculative code
motion [13]. The processor model assumes the ability to
initiate multiple operations in a single cycle where each
operation may have latency greater than one cycle. For
brevity, we shall only discuss code generation for VLIW

processors in which each instruction contains multiple
operations, where each operation is equivalent to a RISC
instruction. Nevertheless, everything discussed in this paper
is applicable to RISC and superscalar processors as well; a
left-to-right, top-to-bottom scan of the VLIW code would
yield the corresponding RISC code.

The examples discussed in this paper assume a processor
with seven pipelined functional units as detailed in Table 1.
The mnemonics for the various operations that are relevant
to the examples are shown along with the unit on which
those operations execute as well as their latencies.

Table 1: Description of a sample processor .

In the rest of this section, we provide a brief overview of
modulo scheduling and discuss the problem that arises from
the fact that after modulo scheduling, the successive
lifetimes of a loop-variant variable are live concurrently.
This section sets up the need for more sophisticated code
schemas than have heretofore been discussed in the
literature. In Section 2 we define and describe certain
hardware capabilities to support modulo scheduling, some
of which were nresent in the Cvdra 5. The motivation for _-.
them is suppliid in Section 3 -which discusses the code
schemas that must be used for DO-loops and WHILE-loops
depending on whether or not these hardware features are
provided.

1.2 An Overview of Modulo Scheduling

It is generally understood that there is inadequate
instruction-level parallelism (ILP) between the operations
within a single basic block and that higher levels of
parallelism can only result from exploiting the ILP between
successive basic blocks 123, 8, 20, 14, 3, 251. In the case of
innermost loops, the successive basic blocks are the
successive iterations of the loop. One method that has been
used to exploit such inter-block parallelism has been to
unroll the body of the loop some number of times and to
overlap the execution of the multiple copies of the loop
body [7]. Although this does yield an improvement in
performance, the back-edge of the unrolled loop acts as a
barrier to parallelism. Software pipelining, in general, and
modulo scheduling, specifically, are scheduling techniques
which attempt to achieve the performance benefits of
extensive unrolling without actually doing so.

The number of instruction issue cycles between the
initiation of successive iterations in a modulo schedule is
termed the initiation interval (II) [16]. This is also the
number of (VLIW) instructions in the body of the modulo
scheduled code if kernel unrolling (see below) has not been
employed. The objective of modulo scheduling is to

n-8186-3175-9/92 $3.00 0 1992 IEEE
158

engineer a common schedule for all iterations such that
when successive iterations are initiated II cycles apart, no
resource usage conflict arises between operations of either
the same or distinct iterations. This requirement is met by
constraining the schedule for a single iteration to be such
that the same resource is never used more than once at the
same time modulo the II.

Lower bounds on II can be established through a simple
analysis of the data dependence graph for the loop boay.
One bound (ResMIIj is derived from the resource usaee
requirements‘ of the graph while the other (RecMII)%
derived from latency calculations around circuits defining
recurrences within the data dependence graph for the loop
body. The actual II must be greater than or equal to the
maximum of these bounds. A more detailed discussion of
ResMII and RecMII can be found in [9, 11,5, 181. Any legal
II must be equal to or greater than MAX(ResMlI, RecMlI).

Figure la displays the FORTRAN DO-loop which we
shall use as an example, and the corresponding intermediate
representation using virtual registers. Figure lb lists the
operations within the body of the loop and the lefthand
column of Figure lb lists names used to refer to individual
operations. These names are used in Figure 2a to specify at
what time and on which functional unit each operation is
scheduled after modulo scheduling is completed with an II
of3.

The schedule for an iteration can be divided into stages
consisting of II cvcles each. The number of stages in one
iteration 7s termed the stage count (SC). Each &ge of the
schedule in Figure 2a is demarcated by heavy lines. Figure
2b shows the record of execution during the steady state of
the modulo scheduled loop. The prefix before each
operation’s name indicates the iteration (relative to the
currently issued nth iteration) to which that operation
belongs. Note that although a single iteration takes 15
cycles to execute, (as shown in Figure 2a), each additional
iteration takes only an incremental 3 cycles. This is the
motivation for performing modulo scheduling.

In a modulo schedule, exactly the same pattern of
operations is executed in each stage of the steady state
portion of the modulo schedule’s execution. This behavior
can be achieved by looping on a piece of code that
corresponds to one stage of the steady state portion of the
record of execution. This code is termed the kernel. The
record of execution leading up to the steady state is
implemented with a piece of code called the prologue. A
third piece of code, the epilogue, implements the record of
execution following the steady state. Figure 3 shows the
code for the loop kernel. Instruction i of the kernel includes
all operations that are scheduled at time i modulo the II.
Also, shown in Figure 3 is the stage of the schedule from
which each operation comes. Operations in the kernel code
which are from distinct stages are from distinct iterations of
the original loop. The branch operation, Bl, determines
whether or not another iteration is to be executed, and since
its latency is 2 cycles, it must be scheduled in the second to
last instruction of the kernel.

Figure 4a uses this example DO-loop to demonstrate
the abstracted representation of code that we shall use in this
paper. Each square represents one stage’s worth of code from
a single iteration. The letter label in the square indicates the
corresponding stage, with A corresponding to stage 0, B to
stage 1, and so on. Thus, the set of rectangles in the leftmost
c&mn correspond to all the operations in the fist iteration.
Each row of sauares renresents II VLIW instructions. The row
of squares thit includks the last stage of the first iteration
corresponds to the kernel code (Figure 4a). The triangle of
squares above the kernel represents the prologue code and
the triangle of squares below the kernel represents the
epilogue code.

1.3 Overlapped Lifetimes
The code in Figure 3 is incorrect as shown. Consider the

operation t03 = iadd(t03,#4) which at time 0 computes a
new address value into virtual register t03 (Figure 4a). The
lifetime of this value extends to time 12 when it is used for
the last time. However, 3 cycles later the same operation is
executed again on behalf of the next iteration and will
overwrite the previous value in t03, while it is still live,
yielding an incorrect result. One approach to fixing this
problem is to provide some form of register renaming so that
successive definitions of t03 actually use distinct registers.
We shall define such a scheme in Section 2. It is important to
note that conventional hardware renaming schemes are
inadequate. Since, successive definitions of t03 are
encountered before the uses of the prior definitions, it is
impossible even to write correct code for the modulo
scheduled loop with the conventional model of register
storage.

When no hardware support is available, modulo
scheduling is made uossible bv modulo variable
expansioi, (MVE), i.e.: unrolling the kernel and renaming
at compile time the multiple (static) definitions that now
exist of each virtual register [II]. The unrolling and
renaming prevents successive lifetimes, corresponding to the
same loop-variant physical register, from overlapping in
time. The minimum degree of unroll, Kmin, is determined by
the longest lifetime among all loop-variants i. Assume that
each loop variant i has parameters starti and endi marking
the beginning and end of the lifetime. Because iterations are
initiated every II cycles, Kmin can be calculated as

Kmin = M+X (pdi;taTti)])

In our example, the longest lifetime is 12 cycles
corresponding to the definition of t03. For an II of 3, this
requires that Kmin = 4. Every fourth definition of t03 can
reuse the same physical register since its previous contents
are no longer live. The structure of the code after kernel
unrolling is shown in Figure 4b. ‘Ihe labels for the squares
now include a numerical suffix which specifies which code
version is being used. By looking at the columns one can see
that there are Kmin distinct versions of code for an iteration
and that the successive iterations cycle through these four
versions. Each version makes use of different sets of physical
registers to avoid over-writing live values.

It may appear that modulo scheduled code can be
generated in conformance with the code schemas of Figures
4a or 4b. We shall see in Section 3 that this is not the case
and that, in fact, considerably more complex schemas are
needed if performance is not to be compromised. The
problem is that with the code schemas of Figures 4a and 4b,
it is only possible to execute i+4 and 4*i+4 iterations
respectively, where i 2 0. (Four iterations can be executed by
branching from the last stage of the prologue to the fist
stage of the epilogue. Fewer iterations cannot be executed
with the codes schemas in their current form.) These code
schemas have to be augmented if an arbitrary number of
iterations are to be executable.

1.4 Pre-conditioning of Modulo Scheduled DO-Loops
A solution, that is often employed, is to pre-condition

the modulo scheduled loop so that only the appropriate
number of iterations remain to be executed at the time the
prologue is entered. In general, the code schemas of Figures
4a and 4b can execute only certain numbers of iterations, N,
where N = K*i + (SC-l) and where K is the degree of unroll,
SC is the number of stages in one iteration and i 2 0. When
the desired number of iterations, L, is not of this form, a
conventional, non-software pipelined version of the loop is
fist executed until the number of remaining iterations is of
the above form. At this point, the modulo scheduled code

159

schema is entered with an appropriate trip count. The
number of iterations, M, in the pre-conditioning loop is
given by

(

I-, ifL<SC- 1

M = [L - (SC-l)] mod K, otherwise.

N= L-M

These M iterations are executed relatively slowly and the
remaining N iterations are executed with the full, modulo
scheduled level of performance. Assume that the time taken
to execute one iteration of the non-software pipelined, pre-
conditioning loop is SLGC*II cycles. Then

Tpc = M*SL + (N + SC - l)*II

TI,jd = (L + SC - l)*II

where Tpc is the execution time for the pre-conditioned
loop and TIdeal is the ideal execution time for the software
pipelined loop. The first term in the formula for TPC is the
time spent in the pre-conditioning loop and the second term
is the time spent in the software pipelined loop. The
speedups in the two cases, relative to a non-software
pipelined version of the loop are given by

spc = L*sL
M*SL + (N + SC - l)*II

SIdcal = L*sL
(L + SC - l)*II

The effectiveness of pre-conditioned code is highly
dependent upon the nature of the processor architecture. In
order to better illustrate this point, we define four
processors: Pl, P2, P3, P4 (Table 2). Processor P3 is exactly
the sample processor of Table 1. Processors Pl and P2 are
versions of the sample processor having identical latency
but reduced numbers of functional units, while processor P4
is P3 with increased latencies.

A schedule was generated for the example program of
Figure 1 for each of the processors in order to help illustrate
the relationship between the amount of processor parallelism
and the four parameters which determine pre-conditioned
code performance. The four parameters are: the initiation
interval (II), the number of stages (SC), the minimum degree
of kernel unroll (Kmia) and the schedule length of a single
non-overlapped loop iteration (SL). Note that K 1 Krain. In
this discussion we assume that K = Khn. Parameters resulting
from schedules for the four processors are shown in Table 3.

In all four schedules, II was equal to ResMII because
each schedule saturates a resource. For the schedule for
processor Pl, fifteen total operations were scheduled onto a

single functional unit. For P2, six memory operations were
scheduled onto a single memory unit. For both P3 and P4,
six memory operations were scheduled onto two memory
units. Thus, the ResMII and a resulting II can be justified and
as we increase the number of functional units within the
processor (Pl, P2, P3), the II decreases.

SC represents the length of the software pipeline
schedule of a single iteration divided by the II and rounded
up to the nearest integer. If we were to assume that the
schedule length for a single iteration were held constant,
than the effect of reducing II is to increase the number of
stages. We can see that this increase in SC indeed occurs as
one goes from processor Pl to P2 to P3. As II decreases
through the values 15, 6 and 3, SC increases through the
values 2, 3 and 5, respectively. The parameter Kmin can be
viewed similarly. If we were to assume that the longest
lifetime is constant among the different schedules and is
then divided by II to yield Kmia we will see a similar
progression of decreasing II and increasing Kmia. SC and
Kmtn are not strictly inversely proportional to II. As we add
functional units, the schedule length and the lifetime
lengths do not stay absolutely constant. Processor P4
demonstrates the effects of increasing the latency which is to
generally increase schedule lengths and, correspondingly, to
increase SC, Kmial and SL.

The effects of varying these parameters on the speedups,
TPc and TIdeat, achieved by the pre-conditioned loop and the
ideal case, respectively, are shown in Figure 5. Note that for
a machine with little parallelism such as Pl (Figure 5a), pre-
conditioning is quite satisfactory because the time lost in
non-overlapped pre-conditioning code is small. One reason
for this is the small Kmia which results in a small value for M.
Secondly, the small difference between SL and II decreases
the benefits of software pipelined execution over non-
overlapped execution.

Although pre-conditioning is an acceptable solution
for processors with little instruction-level parallelism, in
processors with as much parallelism as P3 or P4 (Figures 5c
and 5d), the loss in performance due to preconditioning is
very significant. In particular, only very large trip counts
can guarantee that the loop achieves close to asymptotic
performance. For P3 and P4, the maximum value of M is
large and so is the difference between SL and II.
Furthermore, pre-conditioning is not an option with
WHILE-loops. Better alternatives are needed with VLIW
processors and aggressively superscalar processors or if
general-purpose computation involving WHILE-loops is to
be supported. These are the subject of Section 3.

Table 2. Definition of Processors Pl, P2, P3, P4

Pl A single functional unit which executes all operations. Latencies are as in Table 1.

P2 Three functional units. An IALU unit executes all integer operations and branches. The memory unit performs loads and stores.
The floating point unit executes all floating point operations. Latencies are as in Table 1.

P3 The sample processor of Table 1.

P4 The sample processor with all latencies doubled.

Table 3. Results of Scheduling Sample Processors

Machine II SC ‘kin SL
Pl 15 2 2 20
P2 6 3 3 16
P3 (sample processor) 3 5 4 15
P4 3 9 9 2s _

160

1.5 Modulo Scheduling of WHILE-Loops
In DO-loops, it is possible to decrement and test the

count of the remaining iterations in time to either start the
next iteration with an initiation interval of II or exit the
kernel. This is not always the case in the broader class of
loops which we shall refer to in this paper as “WHILE-
loops”. This is the class of single entry loops with a single
control flow back-edge, one or more exits and for which it is
not known, at the time that the loop is entered, what the trip
count will be. Whether another iteration is to be executed is
known somewhere in the middle of the current iteration and
the extent of software pipelining is apparently limited by
the fact that the next iteration cannot be initiated until this
point in time.

Consider the situation if in Figure 4a it is not known
until stage C whether another iteration is to be executed. The
earliest time that the next iteration could be initiated would
be at the end of stage C. The resulting modulo schedule
would have an II that is three times as large (Figure 6a). The
limiting dependence is the control dependence between a
loop-exiting branch operation in one iteration and all of the
operations in the next iteration. Assuming hardware support
for speculative code motion [13], this control dependence
can be relaxed to yield a smaller II and a better modulo
schedule [221.

In Figure 6b, the operations in stages A and B of a given
iteration, instead of being control dependent on the branch
operation from stage C of the previous iteration, have been
made dependent on the corresponding branch operations
from three and two iterations ago, respectively, i.e., they are
executed speculatively. This is clear in-Figure -6b since stages
A and B are executed before or in oarallel with stage C of the
previous iteration. The remaining-stages are scheduled non-
speculatively after stage C of the previous iteration. The net
result is a schedule that yields the same performance as
would be obtained for a DO-loop.

The speculative execution of stages A and B implies
that at every instant, after the second stage of the fist
iteration, we have two iterations that have been initiated
speculatively. When the kernel is exited, we can stop
executing, and leave unfinished, the two speculative
iterations that are in progress at that point. In Figure 6b, this
aborted computation- is-the rightmost two columns of the
eoiloaue which are shown shaded. The code for this is
eiin&ated from the epilogue. In general, if 9 stages of each
iteration are executed speculatively, the rightmost 8
columns of the epilogue are eliminated and the epilogue
length reduces by 8 stages.

2 Architectural Support for Modulo Scheduling

In this section, we shall describe architectural features
that support the use of fast, compact code for modulo
scheduled DO-loops and WHILE-loops. The motivation for
their existence as- well as the manner in which they are
intended to be used is deferred to Section 3.

2.1 Rotating Register Files
A rotating register file is addressed by adding the

instruction’s register specification field to the contents of
the Iteration Control Pointer (ICP) modulo the number of
registers in the rotating register file. Special loop control
operations, that are described below, decrement the ICP each
time a new stage starts. As a result of decrementing the ICP, a
new absolute register now corresponds to the register
specifier i, and the register that was -previously specified as
register i would have to be soecified as register i+l. This
alibws the lifetime of a value generated in-one iteration to
overlap the lifetimes of corresponding values generated in
previous and subsequent iterations without code replication.

The rotating register file is quite similar in concept to
vector registers. Instead of moving the pointer every cycle, it
is moved once per kernel iteration, and instead of having

multiple vector registers, they are pooled into one register
file. The use and allocation of rotatine resisters is described
in [17]. One version of rotating regist&s f&t appeared in the
scratchpad register files of the FPS AP-120B and FPS-164
]41.

2.2 Predicated Execution
The Iteration Control Register (ICR) is a rotating

resister file that stores boolean values called medicates. An
operation is conditionally executed based on’ the value of
the predicate associated with it. For example, the operation
“a = op(b,c) if p” executes if the predicate in the ICR register
p is true (one), and is nullified if the predicate is false (zero).
Predicated execution permits the generation of more
compact code by conditionally disabling the execution of
operations during prologue and epilogue execution. The
need to unroll a prologue and epilogue is eliminated,
thereby supporting the generation of kernel-only code as
described in Section 3.5.

In addition to supporting the combining of prologue,
kernel. and eoilonue code. medicates are also used to enable
moduio schkdujing of. -loops containing conditional
branches [S, 191. Predicates permit the IF-conversion of the
loop body [2], thereby eliminating all branches from the
loop body. The resulting branch-free loop body is modulo
scheduled. This was the primary motivation for providing
medicated execution in the Cydra 5. More recently, limited
forms of predicated execution have been incorporated or
proposed in other machines [6, 11. In the absence of
predicated execution, other techniques must be used
requiring either multiple versions of code corresponding to
the various combinations of branch conditions [6, 15, 211 or
restrictions on the extent of overlap between successive
iterations [111. Predicated execution is conceptually similar
to, but more general than, the use of mode bits in the vector
mask register of a vector processor.

2.3 Speculative Execution
Speculative execution consists of executing an

operation before it is clear that it should, in fact, be
executed. One way of achieving speculative execution is by
speculative code motion, i.e., by moving an operation up
above the branch that could have directed flow of control
away from this operation [7]. The main challenge is to report
exceptions correctly in the face of speculative execution,
i.e., if and only if the exception would have been reported in
the non-speculative execution of the program. The hardware
support assumed involves having two versions of every
operation that can be speculatively executed (one normal
opcode and one speculative opcode), and an additional bit
in every register to serve as a tag indicating that the register
contains an exception tag rather than normal data. A
detailed description of this hardware support and its use is
described elsewhere [131.

2.4 Loop Control Operations
In this paper we use three loop control operations for

modulo scheduling DO-loops: brtop, bquit and rotate.
These operations are merely described below; their use is
motivated in Section 3.5. The description of the brtop
operation provided here follows that by Dehnert, et al. [5].
A flowchart for the brtop is provided in Figure 7a. The brtop
operation is scheduled in the second last cycle of a stage
within the loop body so as to complete execution in the last
cycle. The ICP is decremented every loop iteration so that
each iteration can reference a different set of registers. The
loop counter (LC) which counts the remaining loop
iterations is decremented until it reaches zero. Thereafter, the
epilogue stage counter (ESC) which counts epilogue stages
is decremented until it reaches zero. At this point, the brtop
branch is not taken and the loop is exited. The ESC supports
the execution of the extra iterations of the kernel required to
drain the software pipeline. The brtop operation assigns a
boolean value to the predicate register ICR(ICP) which

161

controls the conditional execution of the next loop
iteration. As the LC is decremented, the assignment to
ICR(ICP) sets to true the controlling predicate for the next
loop iteration. After LC has reached zero, the assignment to
predicate ICR(ICP) sets to false the controlling predicate for
subsequent loop iterations, thereby discontinuing the
initiation of new iterations. The brtop operation finds LC=O
after the last iteration has been initiated, and finds ESC =
LC = 0 when it is time to exit the kernel. The initial value of
ESC determines how many additional times the kernel
should be executed after LC has become 0.

The bquit operation (Figure 7b) is similar to the brtop
operation except that it takes the branch if LC _5 0. The brtop
operation is used when a code generation schema continues
execution of a loop by branching (back to the top of the
kernel). The bquit operation is used when a code generation
schema continues execution of a loop by falling through to
the next stage of the prologue. The third loop control
operation, rotate, unconditionally decrements the ICP and
sets the predictae pointed at by the ICP to 1. The rotate does
not affect the flow of control.

Two other loop control operations, wtop, wquit are
needed in addition to the rotate operation for module
scheduling WHILE-loops. The wtop opera’tion is defined in
Figure Sa. In the case of WHILE-loops, the number of
iterations (and the loop counter) are not known at the time
the loop is entered. Instead of the loop counter, the wtop
operation uses two inputs, a boolean and a predicate, and
produces an output predicate. The output is true only if
both the input boolean and the input predicate are true.
This ensures that an iteration completes only if the previous
iteration completed and the condition for the WHILE-loop
was evaluated to false. The epilogue counter is used just as
in brtop to allow the last few iterations to complete before
the branch out of the loop is taken. The ICP is decremented
as in brtop so that each iteration references a different set of
registers. The wquit operation (Figure 8b) is similar to the
wtop operation but has been altered much like the bquit
operation. Whereas the wtop operation continues loop
execution by branching back to the top of the kernel, the
wquit operation continues loop execution within the
prologue by falling through to the next stage.

In the discussion of code schemas, we shall be
considering situations when neither predicated execution
nor rotating registers are present. When this is the case, the
above five loop control operations degenerate to relatively
conventional branch operations. All the necessary loop
control operations and their semantics are listed in Table 4.

3 Code Generation Schemas for Modulo Scheduled Loops

When generating code for modulo schedules, two
fundamental problems must be overcome. First, a means
must be identified to prevent lifetimes, corresponding to
successive definitions of the same loop-variant virtual
register in successive iterations, from being assigned to the
same physical register. One way to accomplish this is to use
different versions of the code for successive iterations, with
each version making use of different registers as a result of
modulo variable expansion. The alternative is to use a single
version of the code and to provide a rotating register file
that dynamically renames the instruction-specified sources
and targets, thereby achieving the same objective. Second, a
means must be identified to allow subsets of the steady state
software pipeline, the kernel, to be executed. This is required
in order to handle the first few and last few iterations of the
module scheduled loop and to handle the case of a smaller
number of loop iterations than that corresponding to a
single pass through the prologue, kernel and epilogue. It is
possible to generate code for modulo scheduled loops for
each assumption regarding the choice of code generation
technique and available hardware support. All four code
schemas, depending on whether rotating registers, predicated
execution, neither or both are present, have been studied
[18],. In this paper we shall restrict our discussion to two of
the four sets of code schemas. In code schema 1, only
speculative code motion is supported. In code schema 4, that
plus predicated execution and rotating register files are
provided.

All of the code schemas described below have two
things in common. First, it is assumed that there is a branch
preceding the code schema that checks that the trip count of
a DO-loop is at least one; if not, the entire code schema is
branched around. Second, whenever a code schema has more
than one control flow path out of it and into the code that
follows the module scheduled loop, it is to be understood
that there exists code on each of these paths which copies the
scalar live-out values (if any) into the registers in which the
subsequent code expects to find them.

Code generation schemas for modulo scheduled
WHILE-loops are similar to those for DO-loops.
Nevertheless, there are differences that result from the fact
that the trip count cannot be predetermined prior to loop
entry. Here, we shall consider only the schemas for code
generation, not the details of how to modulo schedule
WHILE-loops, which is discussed elsewhere [22]. The
WHILE-loops referred to in this section correspond to the
do-while construct of the C language with an arbitrary
number of exits from the loop. One important distinction
from DO-loops is that pre-conditioning is not an option
with WHILE-loops.

Table 4. Definitions of Loop Control Operations

Name of operation I operation semantics I
brtop defined in Fig. 8a
wtop defined in Fig. 9a

bquit defined in Fig. 8b

wquit defined in Fig. 9b
“oop do nothing
rotate ICP = ICP-1; ICR(ICP)=l;

bet

bctb

bc

bcb

If(LD0) (LC=LC-1; take branch)
If(L00) (LGLC-1;)else take branch

If(not exit condition) take branch

If(exit condition) take branch

162

Schema 1 1s

Table 5. Application of Loop Control Operations

Placement of Operation Within
DO-Loops

Within
WHILE-loops

Schema 4c Kernel stage I brtop I wtop I

We shall avoid detailed discussions of the WHILE-loop
schemas since in all cases they closely parallel those for DO-
100~s. but with the following differences.

brtop and bquit operati&s are consistently replaced by
wtop and wquit operations, respectively. The loop
counter is irrelevant.
The fist 0 stages of the prologue do not contain an exit
branch because the first exit condition is not evaluated
until stage 0 +1 of the first iteration. Accordingly, the
first 0 branch arcs out of the prologue, which are shown
as dashed lines, are understood to be absent.
When rotating registers or predicates are present, these
first 0 stages contain rotate operations in place of the
wquit branches so that the requisite loop control
functions are still performed.
The rightmost 0 columns of every epilogue (which are
shown shaded in the figures) are deleted since these
correspond to the unnecessary completion of
speculatively initiated iterations. As a result, the length
of each complete epilogue decreases by 8 stages.

Table 5 is used to determine which specific loop control
operation is to be used in each stage of the various code
schema that are discussed in the rest of this section.

3.1 Code Schema 1: Only Speculative Support
We fist consider, for the DO-loop example of Figure 1,

a code generation schema (Figure 9a) which requires no
special hardware. Recall that for this example, SC = 5 and
Kmia = 4. As before, each square is labeled with a letter
identifying the stage and a number identifying the code
version (register assignment choice) used. All stages of a
single iteration (same column) correspond to the same code
version. A single stage of the modulo scheduled code (all the
squares in a single row) consists of one stage each (and a
different one) from successive iterations. A loop-control
branch is executed at the end of every stage of the modulo
scheduled code as specified by Table 5. Arrows indicate
taken branches which, typically, signify transfer of control
to an epilogue which completes unfinished portions of the
iterations that were in execution when the exit branch was
taken.

We can divide the code generated with this schema into
a prologue, a kernel, multiple partial epilogues and
multiple complete epilogues. Since rotating registers are
absent, the code schema must include all the code shown in
Figure 4b plus additional code to permit an arbitrary
number of iterations. The unique prologue is depicted by
the topmost triangle of rows with left hand column Al . . . Dl.
The kernel is the full width parallelogram consisting of Kmia
= 4 rows with left hand squares labeled El, E2, E3, E4.
Register lifetime overlap requirements necessitate the kernel
be unrolled to yield four copies. The last stage of the kernel

contains the bet operation which, when taken, closes the
loop or, when not taken, enters the complete epilogue
depicted by the triangle with righthand column B4 . . . D4.
The rest of the stages in the prologue and kernel contain
bctb operations which, when taken, lead to various versions
of complete or partial epilogues. Complete epilogues are
reached by exiting the loop at the end of any of the four
kernel stages, or by exiting from the the final prologue
stage. Partial epilogues are reached by exiting from any of
the earlier (fist three) prologue stages. The LC must be set
initially to one less than the desired trip count.

The code schema of Figure 9a can be seen to be
redundant. The epilogues reached by branching out of the
final prologue stage and by falling out of the final kernel
stage are identical and can be merged into a single epilogue.
Each of the partial epilogues reached by branching out of
one of the earlier stages of the prologue has a final portion
which is identical to the final portion of one of the complete
epilogues. This final portion of the partial epilogues can be
eliminated and replaced by an unconditional branch to the
appropriate stage of the appropriate complete epilogue. The
resulting code schema, with this redundancy eliminated, is
shown in Figure 9b.

Figure 9 also shows the code generation schema for a
WHILE-loop in the absence of hardware support. (The
shaded squares and the dashed lines should be viewed as
absent for the WHILE-loop schema.) This example loop has
SC = 5, Kmia = 4, 8 = 2 and, therefore, the number of
epilogue stages, ES = SC-@-l = 2. All of the standard
differences listed above, between DO-loop schemas and
WHILE-loop schemas, apply. Other aspects of this schema
are the same as that for DO-loops. As with DO-loops, normal
conditional branches are employed and the ESC is
unnecessary.

3.2 Code Schema 1s: Aggressive Speculation
Aggressive speculative code motion can be used to

minimize the length of the epilogue in both DO-loops and
WHILE-loops. In particular, if the loop exit branch can be
scheduled in the last stage of an iteration, then 8 would be
equal to SC-l and the length of the epilogue would be zero.
Since t3 rows and 8 columns of every partial or complete
epilogue are deleted from schema 1, all of the epilogues
would disappear. 9 = SC-1 corresponds to all but the
operations in the last stage being executed speculatively. We
shall refer to this as code schema 1s. In certain cases, there
may be too many operations (such as stores) to fit in the last
stage without compromising the II. In such cases, 8 would
have to be less than SC-l and some of the epilogues would
be present albeit with reduced length.

163

3.3 Code Schema lpc: Pre-conditioned Code (for DO-
Loops only)
In the absence of predicates or rotating registers, the

multiple epilogues of code schema 1 can be eliminated,
yielding the code schemas in Figure 4b, by pre-
conditioning the loop. Recall from Section 1.4 that the
number of iterations, M, in the pre-conditioning loop is
given by

1

L, ifL<SC- 1

M = [L - (SC-l)] mod K, otherwise.

N= L-M

where L is the desired number of iterations, K is the degree
of unroll and SC is the number of stages in one iteration. The
remaining N iterations are executed in the modulo
scheduled code schema. The LC must be initialized prior to
entering the modulo scheduled loop with the value [N-(SC-
l)] div K. The branch operation at the end of the kernel must
decrement the loop counter by 1 each time it is executed
(which is every K*II cycles). No other branch operations are
needed in either the prologue or the kernel. Alternatively,
the LC may be initialized to [N-(SC-l)] and the branch at
the bottom of the kernel must decrement the LC by K each
time. (Of course, both alternatives are identical when K = 1.)
The pre-conditioned version of code schema 1 will be
referred to as code schema lpc .

3.4 Code Schema 4: Speculative Support, Rotating
Registers and Predicated Execution
The code schema of Figure 10a makes use of both

predicates and rotating registers. Starting with code schema
1 (Figure 9b), we see that each partial epilogue is a subset of
the complete epilogue below it. So, rather than executing
the partial epilogue one could, instead, execute the
complete epilogue with the appropriate number of the
leftmost columns disabled bv oredicates. This eliminates the
partial epilogues. Next, be&&se of the rotating registers,
multiple versions of code are unnecessary. All the epilogues
can be merged with the one below the kernel, and the kernel
unrolling can be eliminated. The result is the code schema
shown in Figure 10a. All the bquit operations have as their
target the beginning of the (single) epilogue. With this code
schema, too, the LC must initially be set to one less than the
desired trip count and the ESC must be initialized to 0.

As before, there are rotate operations instead of branches
in the first 0 stages of a WHILE-loop schema. Subsequently,
there is a wquit operation in every stage of the prologue and
a wtop operation in the kernel. ESC must be initialized to 0.

3.5 Code Schema 4c: Kernel-Only Code
With hardware support in the form of rotating registers

and predicated execution, it is not necessary to have explicit
code even for the prologue and epilogue; a single copy of
the kernel is sufficient to execute the entire modulo
scheduled loop. This is termed kernel-only code. Consider
the kernel-onlv code schema deoicted in Figure lob. Everv
stage of the code schema in Figure 10a is ‘a subset of th&
kernel-only schema. The prologue and epilogue can be
swept out by executing the kernel with the appropriate
operations disabled by predicated execution. Since this is a
compact version of code schema 4, we shall refer to the
schema in Figure lob as code schema 4c.

The code corresponding to the kernel-only schema is
shown in Figure lla. All operations from the i-th stage are
logically grouped by attaching them to the same predicate,
swcificallv, the contents of the ICR register snecified bv the
predicate &ecifier i (relative to the I&). Thisis represented
in Figure lla by appending “if pi” to every operation from
the i-th stage. This permits all operations from a particular
stage (of one iteration) to be disabled or enabled

independently of the operations from some other stage (of
some other iteration). At every point in time, predicate p. is

the ICR register that is currently pointed to by the ICP. This
predicate is set to 1 by the brtop operation during the ramp
up and steady state phases (i.e., while the value of the loop
counter is greater than 0) and is set to 0 during the epilogue
ohase. Because brtoo decrements the ICP. a different
physical predicate regi&r is written into every II cycles and,
a given predicate value must be referred to by different
predicate specifiers in different stages.

Figure llb demonstrates the manner in which this is
actually effected with the joint use of rotating registers,
predicated execution and the brtop operation. The example
assumes that 7 iterations of a loop of 5 stages is desired. The
loop counter, LC, is initialized to 6--one less than the
number of iterations desired. The epilogue stage counter,
ESC, is initialized to 4--one less than the number of stages.
Lastly, p. (the ICR location that is currently pointed to by
the ICP) is set to 1 and p1 through p4 are set to 0. At this
point, the kernel-only code is entered. Since only p. is true,

only the operations from the fist stage, labelled A, are
executed and the rest of the operations are disabled. At the
end of the fist trip through the kernel, since the LC is
greater than 0, the brtop operation loops back to the top of
the kernel and decrements the LC by 1. It also decrements
the ICP by 1 and, since the ICR is a rotating register file, the
true predicate that used to be p. is now pl. Also, because the
LC was greater than 0, the new p,, is set to 1. During the next
trip through the kernel code, the operations corresponding
to the first two stages, A and B, execute since both pa and p1
are true.

This process is repeated with the operations in the i-th
stage being executed when the corresponding predicate, pi,

is 1. Eventually, the brtop operation finds that the LC is 0,
but loops back because the ESC is greater than 0. However,
it now decrements the ESC, decrements the ICP and inserts a
0 in the new p0. As a result, the next time around, operations
from stage A are not executed. Finally, when both the LC
and ESC are 0, the brtop operation falls through to the code
following the loop. In the process, seven iterations each
consisting of five stages have been swept out by the
combined operation of the brtop operation, rotating
registers and predicated execution.

As with DO-loops, it is possible to generate kernel-only
code for WHILE-loops, but only for the portion after the
fist 0 stages. The first 0 stages of the WHILE-loop when the
boolean expression for the fist iteration is being computed
constitutes the minimal length prologue permissible. The
kernel can then generate all the remaining stages of the loop
iterations. The ESC must be initialized to SC-&l.

Predicated execution and the loop-control branches are
used in much the same way in code schema 4 as they are in
schema 4c, even though an explicit prologue and epilogue
are provided. When executing the prologue or when the
epilogue is executed due to the brtop operation falling
through, the predicates are redundant since only those stages
are present for whom the predicate is true. However, the
predicates are required, when the epilogue is entered via a
bquit operation, so as to disable those stages that are not part
of the partial epilogue that needs to be executed. -

Two mimarv benefits result from the fact that schema 4
provides explicit prologues and epilogues unlike its kernel-
only counterpart. First, the schedules of the prologue and
epilogues can be customized and optimized to take
advantage of the reduced requirements for resources within
the loop startup and loop shutdown phases. Second, code
which originates from outside the innermost loop may be
percolated into and scheduled in parallel with prologue and
epilogue code. This can result in better performance than

164

with kernel-only code, an effect that is more noticeable
when the trip count of the innermost loop is small.

3.6 Bounds on Prologue and Epilogue Lengths
In general, the code schemas described above consist of

a prologue, a steady state kernel, and an epilogue (or
multiple epilogues). The number of stages of prologue (PS)
and epilogue (ES) used in a code schema were assumed to
always be SC-1 and SC-g-1 stages, respectively (with 8 set to
0 for DO-loops). For kernel-only code, these numbers are tl
and 0, respectively. Whereas, the latter numbers do represent
the minimum possible prologue and epilogue lengths, the
former number do not quite correspond to the maximum
lengths. If the sole objective of the prologue and epilogues
is to eliminate the unneeded kernel computation during the
ramp up and ramp down of the software pipeline, then SC-1
and SC-B-1 do, in fact, represent the maximum prologue and
epilogue length required. The prologue and epilogue
lengths are, however, also dictated by the register allocation
strategy [17].

4 Conclusions

Pre-conditioning a modulo scheduled loop, though
acceptable on processors with little instruction-level
parallelism, leads to significant performance degradation on
processors which either are capable of issuing many
operations per cycle or are deeply pipelined. In such cases,
other code schemas must be employed. The generation of a
high performance and correct modulo scheduled code
schema is affected by a number of issues: whether or not the
loop is a DO-loop, the nature of the hardware support
provided, whether or not the loop has live-in or live-out
scalar variables, and the nature of the register allocation
strategy employed. In this paper we have detailed the code
generation schemas, both for DO-loops and WHILE-loops,
for certain combinations of assumptions regarding hardware
support. Two of these schemas (1 and 4) do not compromise
performance. Three other schemas (lpc, Is and 4c) trade
varying amounts of performance for more compact code.

Hardware support for speculative code motion is
valuable with all of the modulo scheduled WHILE-loop
schemas and for Schema 1s in the case of DO-loops as well.
Predicated execution and rotating register files are needed
for Schemas 4 and 4c with both types of loops. Predicated
execution is also valuable when modulo scheduling either
type of loop if control flow is present in the loop body.

References

(Snecial issue on IBM RISC Svstem/6000 orocessor). IBM
joimal of Research and Development 34, 1 (i990). ’
Allen, J.R., Kennedy, K., Porterfield, C., and Warren, J.
Conversion of control dependence to data dependence. In
Proceedinns of the Tenth Annual ACM Symposium on
Principles gf Prbgrannning Languages, (1983). _ .
Butler, M., et al. Single instruction stream parallelism is greater
than two. In Proceedings of the Eighteenth Annual
International Symposium on Computer Architecture, (Toronto,
1991). - -
Charlesworth, A.E. An approach to scientific array
processing: the architectural design of the AP-120B/FPS-164
family. IEEE Computer 14,9 (1981), 18-27.
Dehnert, J.C., Hsu, P.Y.-T., and Bratt, J.P. Overlapped loop
support in the Cydra 5. In Proceedings of the Third
International Conference on Architectural Support for
Programming Languages and Operating Systems, (Boston,
Mass., 1989), 26-38.
Ebcioglu, K., and Nakatani? T. A new compilation technique
for arallelizing loops with unpredictable branches on a
VLI(t architecture. In Languages and Compilers for Parallel
Computing, Gelernter, D., Nicolau, A., and Padua, D., Editor.
1989, Pitmart/Ihe MIT Press: London. p. 213-229.

7.

8.

9.

10.

11.

12

13.

14

15.

16.

17.

18.

19.

20.

21.

22

23.

24.

25.

Fisher, J.A. Trace scheduling: a technique for global
microcode comvaction. IEEE Transactions on Computers C-
30,7 (1981). -
Foster, C.C., and Riseman, E.M. Percolation of code to
enhance parallel dispatching and execution. IEEE
Transactions on Computers C-21,12 (1972), 1411-1415.
Hsu, P.Y.-T. Highly Concurrent Scalar Processing.
Coordinated Science Lab. Technical Report CSG-49.
Universitv of Illinois. 1986.
Jain, S. Circular scheduling: a uew technique to perform
software pipelining. In Proceedings of the ACM SIGPLAN ‘91
Conference on Programming Language Design and
Implementation, (1991) 219-228.
Lam, M. Software pipelining: an effective scheduling
techniaue for VLIW machines. In Proceedings of the ACM
SIGPaN ‘88 Conference on Programming Language Design
andImplementation, (1988), 318-327.
Lee, R.L., Kwok, A.Y., and Briggs, F.A. The floating point
performance of a superscalar SPARC processor. In
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, (Santa Clara, California, 1991), 28-37.
Mahlke, S.A., et al. Sentinel scheduling for VLIW and
superscalar processors. In Proceedings of the The Ftfth
International Conference on Architectural Support for
Programming Languages and Operating Systems, (Boston,
Massachussetts, 1992).
Nicolau, A., and Fisher, J.A. Measuring the parallelism
available for very long instruction word architectures. IEEE
Transactions on Computers C-33, 11 (1984), 968-976.
Nicolau? A., and Potasman, R. Realistic scheduling:
compacbon for pipelined architectures. In Proceedings of the
23th Annual Workshop on Microprogramming and
Microarchitecture, (Orlando, Florida, 1990), 69-79.
Rau, B.R., and Glaeser, C.D. Some scheduling techniques and
au easily schedulable horizontal architecture for high
performance scientific computing. In Proceedings of the
z;_y9ttth Annual Workshop on Microprogramming, (1981),

Rau,, B.k., Lee, M., Tirumalai, P., and Schlansker, M.S.
Regtster allocation for software pipelined loops. In
Proceedings of the SIGPIAN’92 Conference on Programming
Language Design and Implementation, (San Francisco, 1992).
Rau, B.R., Schlansker, M.S., and Tirumalai, P.P. Code
generation schemas for modulo scheduled DO-loops and
WHILE-loops. Technical Report HPL-92-47. Hewlett Packard
Laboratories, 1992.
Rau, B.R., Yen, D.W.L., Yen, W., and Towle, R.A. The Cydra
5 departmental supercomputer: design philosophies, decisions
and trade-offs. IEEE Computer 22. 1 (1989).
Riseman, E.M., and Foster, C.C..Thk inhibition of potential
parallelism by conditional jumps. IEEE Transactions on
Computers C-21, 12 (1972), 1405-1411.
Su, B., and Wang, J. GURPR*: a new global software
pipelining algorithm. In Proceedings of the 24th Annual
International Symposium on Microarchitecture, (Albuquerque,
New Mexico, 1991), 212-216.
Tirumalai, P., Lee, M:, and Schlansker, M.S. Parallelization of
loops with exits on ptpelined architectures. In Proceedings of
the Supercomputing ‘90, (1990), 200-212.
Tjaden, G.S., and Flynn, M.J. Detection and parallel execution
of parallel instructions. IEEE Transactions on Computers C-19,
10 (1970), 889-895.
Touzeau, R.F. A FORTRAN compiler for the FPS-164
scientific computer. In Proceedings of the ACM SIGPLAN ‘84
Symposium on Compiler Construction, (1984), 48-57.
Wall, D.W. Limits of instruction-level parallelism. In
Proceedings of the Fourth International Conference on
Architectural Support for Programming Languages and
Operating Systems, (1991), 176-188.

165

IX3 10 I = 1.N
Q = U(1) * Y(1) I I p1 t01 = iadd(t01,#4)

Y(1) = X(1) + Q

X(1) = Q - V(1) * X(1)

Rl t02 = load(t01)
P2 t03 = iaddCt03.#41
R2 t04 = loadit03j
Ml t05 = fmul(t02,t04)
P3 tO6 = iadd(t06,#4)
R3 t07 = load(t06)
Al t08 = fadd(t07,t05)
Wl storIt03.tO8)
P4 t09 = iadd(t09,#4)'
R4 t10 = loadlt091
m tll = fmulitlO;t07)
Sl t12 = fsub(tO5,tll)
w2 stor(tOd,tl2)

10 CONTINUE Bl brtop

(a) I I (b)

Figure 1: (a) A sample FORTRAN DO-loop. (b) The intermediate representation of the body of the loop.

(4

TiIM IALU 1 IALU 2
Module 3 Mp”o”IY

yyz;Y Multiplier Adder Instruction
Unlt

0 rl:Pl n:p2 n-4:Wl n-l:R4 n-2:Ml n-4:Sl
1 ll:P3 n:Rl n:R2 n-3:Al n:Bl
2 ll:P4 n:R3 n-4:W2 n-2:M2

@)

Figure 2: (a) Modulo schedule for the example of Figure 1. (b) Record of execution for a single stage during the steady state
(assuming register renaming). The label before the colon indicates the iteration to which the operation belongs. Iteration n has

just begun.

Instruction Stage Module Scheduled Kernel Code
0 0 t01 = iadd(t01,#4), tO3 = iadd(t03,#4),

1 t10 1 = oad(tO9).
2 t05 = fmul(t02,t04),
4 stor(t03,t08), t12 = fsub(t05,tll);

1 0 tO6 = iadd(t06,#4), t02 = load(t01). t04 = load(t brtop,

Figure 3: Kernel code after modulo scheduling. (Operations in a single instruction are separated by stage for illustrative
purposes only. There is no such distinction in the code.)

166

Oneiteration One ibrstim
of thesource d thesuurce

Kenel

UlroM Kemd
Degee d Urrdl,

k=4

JEJJ ‘t E2

(a)
@I

Figure 4: (a) The code schema for the modulo scheduled loop. (b) Kernel-unrolled loop structure.

2.00 c
Asymptic Perfommce ---_- _---_-_

d 0.80 . .
u 0.60 . .

p 0.40 . .
0.20 . .

0.00 + 4
0 10 20 30 40 50

Trip Count

0.00 I.....
0 10 20 30 40 50

Trip Count

(4 lb)

20 30

Trip Count

cc)

20 30

Trip Count

(4

Figure 5: Speedup as a function of trip count for a pre-conditioned loop vs. the best achievable code schema. (a) For II = 15, SC
= 2, K tin = 2, and SL = 20. (b) For II = 6, SC = 3, Kmin = 3, and SL = 16. (c) For II = 3, SC = 5, Kdn = 4, and SL = 15. (d) For II

=3,SC=9,Ktii,=9,andSL=25.

167

One iteration
of the source

program

Number
of stages,

s=2

(a)

3ologue

Kernel

Epilogue

Ore iteretim
d hesource

,Trn +

t
Number

of stages,
s=5

1

Prdogue

Figure 6: A modulo scheduled WHILE-loop (a) without and (b) with speculative execution

E@bgre

(4

Figure 7: (a) The brtop operation. (b) The bquit operation

False

True

False SC>0 A;“,
False

True

ICP = ICP-1 ICP = ICP-1

Figure 8: (a) The wtop operation.

168

The wquit operation.

Figure 9: (a) Code schema 1 (without predicated execution or rotating register
files). (b) Code schema 1 after removal of redundant code.

(4

0)

Figure 10: (a) Code schema 4 (with
predicated execution and rotating register

files). (b) Kernel-only code schema.

Instruction Stage Modulo Scheduled Loop Code

0 0 r21 = iadd(r22.X 4) if p0, 1-00 = iadd(rOl,#l) if p0,

1 1-04 = load(rl5) If pl,
3 r22 = fmullr2l.rl9) If 02.

1

2

. ~~~ ~,~~~.~ .-.
4 stor(r04,r17) If p4, x-14 = fsub(r24,r14) if p4

0 r08 = iadd(r09,#4) if p0, r19 = load(r21) if p0, r17 = load(r00) if p0, brtop,
3 r16 = fadd(r08,r23) If p3

0 r14 = iadd(rl5,#4) if p0, r05 = load(r08) If PO,
2 r12 5 fmul(r05,r07) If p2

4 stor(rl2,rl4) if p4

(4

(b)

Figure 11: (a) Kernel code for the kernel-only code schema. (b) Operation of the brtop instruction while executing kernel-only
code for 7 iterations of a loop with 5 stages

169

