Solutions to Final Exam

Problem 1

\[\sum_{n \geq 2} b_n x^n = \sum_{n \geq 2} b_{n-1} x^n + \sum_{n \geq 2} x^n \sum_{1 \leq k \leq n-1} b_k b_{n-1-k} \]

\[= x \sum_{n \geq 2} b_{n-1} x^{n-1} + x \sum_{m \geq 1} x^m \sum_{1 \leq k \leq m} b_k b_{m-k}. \]

This implies

\[B(x) - b_1 - b_1 x = x(B(x) - b_0) + x(b_1 x + b_2 x^2 + \cdots)(b_0 + b_1 x + b_2 x^2 + \cdots), \]

ie,

\[B(x) - 1 - 2x = x(B(x) - 1) + x(B(x) - 1)B(x). \]

This leads to \(xB(x)^2 - B(x) + (1 + x) = 0 \), and hence using \(B(0) = b_0 = 1 \) we have

\[B(x) = \frac{1 - \sqrt{1 - 4x(1 + x)}}{2x}. \]

Problem 2

(a) For \(n = 1 \), \(G_n \) consists of two isolated vertices and is thus by definition Eulerian. For \(n > 1 \), \(G_n \) is Eulerian since (A) it is connected (vertex 1 is connected to vertex \(n + 1 \) through \(1 - 2 - (n + 1) \), and vertex 1 has an edge to each of the remaining vertices) and (B) every vertex has even degree (in fact \(2n - 2 \)).

(b) For \(n = 1 \), \(G_n \) consists of two isolated vertices and has no Hamiltonian circuit. For \(n > 1 \), \(G_n \) has the following Hamiltonian circuit \(1, 2, 3, \ldots, n - 1, n + 1, n + 2, \ldots, 2n, 1 \).

(c) The answer is \(\omega(G_n) = n \). Note that \(\omega(G_n) \geq n \) since \(\{1, 2, \ldots, n\} \) is a clique; \(\omega(G_n) < n + 1 \) since any clique can contain at most one of the vertices \(i, n + i \) for each \(1 \leq i \leq n \).

(d) The answer is \(\chi(G_n) = n \). Note that \(\chi(G_n) \geq n \) since \(\{1, 2, \ldots, n\} \) is a clique and thus each vertex in it has to be painted with a different color; \(\chi(G_n) \leq n \) since we can just paint both vertices \(i, n + i \) with color \(i \), for each \(1 \leq i \leq n \).

Problem 3 Let \(E_0 = \{\{4n + 1, n\}, \{4n + 1, 2n\}, \{4n + 1, 3n\}, \{4n + 1, 4n\}\} \), and

\[E_1 = \{\{4n, 1\}, \{1, 2\}, \{2, 3\}, \ldots, \{n - 1, n\}\}, \]
\[E_2 = \{(n, n + 1), (n + 1, n + 2), (n + 2, n + 3), \ldots, (2n - 1, 2n)\}, \]
\[E_3 = \{(2n, 2n + 1), (2n + 1, 2n + 2), (2n + 2, 2n + 3), \ldots, (3n - 1, 3n)\}, \]
\[E_4 = \{(3n, 3n + 1), (3n + 1, 3n + 2), (3n + 2, 3n + 3), \ldots, (4n - 1, 4n)\}. \]

Then \(E = \cup_{0 \leq i \leq 4} E_i \).

A spanning tree of \(H_n \) has \(4n \) edges, and can be specified by the 4 edges missing from \(E \). For \(\alpha \in \{0, 1, 2, 3, 4\} \), let \(s_{n,\alpha} \) be the number of spanning trees of \(H_n \) for which \(\alpha \) of the missing edges are from \(E_0 \). Then
\[
s_n = \sum_{0 \leq \alpha \leq 4} s_{n,\alpha}.
\]

Clearly, \(s_{n,4} = 0 \) since at least one edge from \(E_0 \) is needed to keep vertex \(4n + 1 \) from being isolated.

To calculate \(s_{n,3} \), we count first how many spanning trees there are that contain \(\{4n + 1, n\} \) but no other edge from \(E_0 \). A spanning tree is now specified by the one missing edge from \(\cup_{1 \leq i \leq 4} E_i \), so that number is \(|\cup_{1 \leq i \leq 4} E_i| = 4n \). We can prove the same result if we count the number of spanning trees that contain any one specific edge but no other edges in \(E_0 \). Thus,
\[s_{n,3} = 4 \cdot 4n = 16n. \]

To calculate \(s_{n,2} \), let \(a_n \) be the number of spanning trees containing \(\{4n + 1, n\}, \{4n + 1, 2n\} \) but no other edges in \(E_0 \); let \(b_n \) be the number of spanning trees containing \(\{4n + 1, n\}, \{4n + 1, 3n\} \) but no other edges in \(E_0 \). Clearly,
\[s_{n,2} = 4a_n + 2b_n. \]

We compute \(a_n \). A spanning tree of this type is specified by a missing edge chosen from \(E_2 \), and a missing edge from \(E_1 \cup E_3 \cup E_4 \). Thus,
\[a_n = |E_2| \cdot |E_1 \cup E_3 \cup E_4| = 3n^2. \]

Similarly,
\[b_n = |E_2 \cup E_3| \cdot |E_1 \cup E_4| = 4n^2. \]

This leads to
\[s_{n,2} = 4 \cdot 3n^2 + 2 \cdot 4n^2 = 20n^2. \]

To calculate \(s_{n,1} \), let \(c_n \) be the number of spanning trees containing \(\{4n + 1, n\}, \{4n + 1, 2n\}, \{4n + 1, 3n\} \) but no other edges in \(E_0 \). Then \(s_{n,1} = 4c_n \). To compute \(c_n \), note that

2
such a spanning tree is specified by a missing edge from each of the sets $E_2, E_3, E_4 \cup E_1$. Hence,

$$s_{n,1} = 4 \cdot 2n^3 = 8n^3.$$

To calculate $s_{n,0}$, note that such a spanning tree is specified by a missing edge from each of the sets E_1, E_2, E_3, E_4. Thus,

$$s_{n,0} = |E_1| \cdot |E_2| \cdot |E_3| \cdot |E_4| = n^4.$$

Putting everything together, we have

$$s_n = \sum_{0 \leq \alpha \leq 4} s_{n,\alpha} = n^4 + 8n^3 + 20n^2 + 16n.$$